Anika Zafiah M. Rus, Hanani Abd Wahab, Yazid Saif, Noraini Marsi, M. Taufiq Zaliran, M. Hafizh Alamshah, Ita Mariza, Shaiqah M. Rus, Sami Al-Alimi, Wenbin Zhou
{"title":"烹调油和木片紫外线发泡复合材料的形态学和声学特性","authors":"Anika Zafiah M. Rus, Hanani Abd Wahab, Yazid Saif, Noraini Marsi, M. Taufiq Zaliran, M. Hafizh Alamshah, Ita Mariza, Shaiqah M. Rus, Sami Al-Alimi, Wenbin Zhou","doi":"10.1007/s10965-025-04307-1","DOIUrl":null,"url":null,"abstract":"<div><p>Polymer foam composites for sound absorption with eco-friendly attributes have gained significant attention in sustainable materials research. This study investigates the impact of ultraviolet (UV) irradiation on the morphological, mechanical, and acoustical properties of bio-epoxy (BE) and synthetic epoxy (SE) foam composites, incorporating wood flakes as fillers at varying loadings (0–20 wt%). BE, derived from waste cooking oil, demonstrated superior resilience to UV exposure compared to SE, maintaining better pore structure, mechanical stability, and sound absorption performance. The results show that after 6000 h of UV exposure, BE composites retained 12–18% higher sound absorption coefficient (α = 0.62–0.78) than SE composites (α = 0.50–0.66) at 3000 Hz after 6000 h of UV exposure, demonstrating superior UV resilience. At 6000 Hz, SE outperformed BE (α = 0.45 vs. 0.35) as a result of structural degradation in BE at higher frequencies, attributed to the natural stabilizing properties of bio-based additives. This study proves that BE foam composites offer improved durability and acoustic performance under prolonged UV exposure, positioning them as promising materials for sustainable acoustics applications.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10965-025-04307-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Morphological and acoustical characterization of UV-irradiated foam composites from cooking oil and wood flake\",\"authors\":\"Anika Zafiah M. Rus, Hanani Abd Wahab, Yazid Saif, Noraini Marsi, M. Taufiq Zaliran, M. Hafizh Alamshah, Ita Mariza, Shaiqah M. Rus, Sami Al-Alimi, Wenbin Zhou\",\"doi\":\"10.1007/s10965-025-04307-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polymer foam composites for sound absorption with eco-friendly attributes have gained significant attention in sustainable materials research. This study investigates the impact of ultraviolet (UV) irradiation on the morphological, mechanical, and acoustical properties of bio-epoxy (BE) and synthetic epoxy (SE) foam composites, incorporating wood flakes as fillers at varying loadings (0–20 wt%). BE, derived from waste cooking oil, demonstrated superior resilience to UV exposure compared to SE, maintaining better pore structure, mechanical stability, and sound absorption performance. The results show that after 6000 h of UV exposure, BE composites retained 12–18% higher sound absorption coefficient (α = 0.62–0.78) than SE composites (α = 0.50–0.66) at 3000 Hz after 6000 h of UV exposure, demonstrating superior UV resilience. At 6000 Hz, SE outperformed BE (α = 0.45 vs. 0.35) as a result of structural degradation in BE at higher frequencies, attributed to the natural stabilizing properties of bio-based additives. This study proves that BE foam composites offer improved durability and acoustic performance under prolonged UV exposure, positioning them as promising materials for sustainable acoustics applications.</p></div>\",\"PeriodicalId\":658,\"journal\":{\"name\":\"Journal of Polymer Research\",\"volume\":\"32 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10965-025-04307-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10965-025-04307-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-025-04307-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Morphological and acoustical characterization of UV-irradiated foam composites from cooking oil and wood flake
Polymer foam composites for sound absorption with eco-friendly attributes have gained significant attention in sustainable materials research. This study investigates the impact of ultraviolet (UV) irradiation on the morphological, mechanical, and acoustical properties of bio-epoxy (BE) and synthetic epoxy (SE) foam composites, incorporating wood flakes as fillers at varying loadings (0–20 wt%). BE, derived from waste cooking oil, demonstrated superior resilience to UV exposure compared to SE, maintaining better pore structure, mechanical stability, and sound absorption performance. The results show that after 6000 h of UV exposure, BE composites retained 12–18% higher sound absorption coefficient (α = 0.62–0.78) than SE composites (α = 0.50–0.66) at 3000 Hz after 6000 h of UV exposure, demonstrating superior UV resilience. At 6000 Hz, SE outperformed BE (α = 0.45 vs. 0.35) as a result of structural degradation in BE at higher frequencies, attributed to the natural stabilizing properties of bio-based additives. This study proves that BE foam composites offer improved durability and acoustic performance under prolonged UV exposure, positioning them as promising materials for sustainable acoustics applications.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.