过冷液体和玻璃约束锗烯的压缩诱导相变

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Vo Van Hoang, Nguyen Hoang Giang, Vladimir Bubanja
{"title":"过冷液体和玻璃约束锗烯的压缩诱导相变","authors":"Vo Van Hoang,&nbsp;Nguyen Hoang Giang,&nbsp;Vladimir Bubanja","doi":"10.1007/s11051-025-06269-3","DOIUrl":null,"url":null,"abstract":"<div><p>Compression-induced phase transitions in supercooled liquid and glassy confined germanene are studied via molecular dynamics (MD) simulations. Glassy state is obtained by cooling from the melt to 300 K under zero pressure. Then, some selected atomic configurations at temperatures above and below <span>\\({T}_{g}\\)</span> are taken as initial supercooled liquid or glassy two-dimensional (2D) models for the isothermal compression from low-density to high-density states in order to study compression-induced phase transitions in the models. We find formation of the triangular-hexa (<i>trh</i>) germanene as the most stable state in the high-density region. Moreover, we find the compression-induced amorphization of supercooled liquid and amorphous-amorphous phase transitions in the system.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compression-induced phase transitions in supercooled liquid and glassy confined germanene\",\"authors\":\"Vo Van Hoang,&nbsp;Nguyen Hoang Giang,&nbsp;Vladimir Bubanja\",\"doi\":\"10.1007/s11051-025-06269-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compression-induced phase transitions in supercooled liquid and glassy confined germanene are studied via molecular dynamics (MD) simulations. Glassy state is obtained by cooling from the melt to 300 K under zero pressure. Then, some selected atomic configurations at temperatures above and below <span>\\\\({T}_{g}\\\\)</span> are taken as initial supercooled liquid or glassy two-dimensional (2D) models for the isothermal compression from low-density to high-density states in order to study compression-induced phase transitions in the models. We find formation of the triangular-hexa (<i>trh</i>) germanene as the most stable state in the high-density region. Moreover, we find the compression-induced amorphization of supercooled liquid and amorphous-amorphous phase transitions in the system.</p></div>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":\"27 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11051-025-06269-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06269-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过分子动力学(MD)模拟研究了过冷液体和玻璃态锗烯的压缩相变。通过在零压力下将熔体冷却到300k得到玻璃态。然后,选取一些温度在\({T}_{g}\)以上和以下的原子构型作为从低密度到高密度等温压缩的初始过冷液体或玻璃二维(2D)模型,研究模型中压缩引起的相变。我们发现在高密度区形成的三角六(trh)锗烯是最稳定的状态。此外,我们还发现了系统中压缩诱导的过冷液体非晶化和非晶-非晶相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compression-induced phase transitions in supercooled liquid and glassy confined germanene

Compression-induced phase transitions in supercooled liquid and glassy confined germanene are studied via molecular dynamics (MD) simulations. Glassy state is obtained by cooling from the melt to 300 K under zero pressure. Then, some selected atomic configurations at temperatures above and below \({T}_{g}\) are taken as initial supercooled liquid or glassy two-dimensional (2D) models for the isothermal compression from low-density to high-density states in order to study compression-induced phase transitions in the models. We find formation of the triangular-hexa (trh) germanene as the most stable state in the high-density region. Moreover, we find the compression-induced amorphization of supercooled liquid and amorphous-amorphous phase transitions in the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信