fe3o4负载的三嗪-钯(0):一种高效、可回收的Suzuki-Miyaura和脱氮交叉偶联纳米催化剂

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Kiran James, Vishal Kandathil, Haritha Jalaja Raghavan, Narayanapillai Manoj
{"title":"fe3o4负载的三嗪-钯(0):一种高效、可回收的Suzuki-Miyaura和脱氮交叉偶联纳米催化剂","authors":"Kiran James,&nbsp;Vishal Kandathil,&nbsp;Haritha Jalaja Raghavan,&nbsp;Narayanapillai Manoj","doi":"10.1007/s10876-025-02785-3","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, a new magnetic nanoparticle-supported triazine-based palladium(0) (Tz@Fe<sub>3</sub>O<sub>4</sub>–Pd) was prepared by a facile multistep synthesis employing cost-effective chemicals. The Tz@Fe<sub>3</sub>O<sub>4</sub>–Pd nanomagnetic catalyst was characterized by various analytical techniques such as Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area analysis, transmission electron microscopy, inductively coupled plasma-mass spectroscopy, energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, X-ray powder diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and vibrating sample magnetometer. The nitrogen atoms contained on the triazine moiety primarily serve as the anchoring sites for the Pd nanoparticles, which are produced through polyol reduction. The synthesized nanomagnetic catalyst Tz@Fe<sub>3</sub>O<sub>4</sub>–Pd demonstrated excellent catalytic activity in Suzuki-Miyaura cross-coupling and denitrogenative cross-coupling reactions under mild and environmentally friendly reaction conditions. Due to its magnetic nature, the recovery of the Tz@Fe<sub>3</sub>O<sub>4</sub>–Pd was easy with an external magnet, and it showed good activity till ten recycles with no substantial decrease of activity in Suzuki-Miyaura cross-coupling and till five recycles in denitrogenative cross-coupling reactions. The Tz@Fe<sub>3</sub>O<sub>4</sub>–Pd nanocatalyst can be further investigated due to its low cost, environmental friendliness, and great catalytic activity in a variety of cross-coupling reactions.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe3O4-Supported Triazine-Palladium(0): An Efficient and Recyclable Nanocatalyst for Suzuki-Miyaura and Denitrogenative Cross‑Coupling\",\"authors\":\"Kiran James,&nbsp;Vishal Kandathil,&nbsp;Haritha Jalaja Raghavan,&nbsp;Narayanapillai Manoj\",\"doi\":\"10.1007/s10876-025-02785-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present work, a new magnetic nanoparticle-supported triazine-based palladium(0) (Tz@Fe<sub>3</sub>O<sub>4</sub>–Pd) was prepared by a facile multistep synthesis employing cost-effective chemicals. The Tz@Fe<sub>3</sub>O<sub>4</sub>–Pd nanomagnetic catalyst was characterized by various analytical techniques such as Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area analysis, transmission electron microscopy, inductively coupled plasma-mass spectroscopy, energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, X-ray powder diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and vibrating sample magnetometer. The nitrogen atoms contained on the triazine moiety primarily serve as the anchoring sites for the Pd nanoparticles, which are produced through polyol reduction. The synthesized nanomagnetic catalyst Tz@Fe<sub>3</sub>O<sub>4</sub>–Pd demonstrated excellent catalytic activity in Suzuki-Miyaura cross-coupling and denitrogenative cross-coupling reactions under mild and environmentally friendly reaction conditions. Due to its magnetic nature, the recovery of the Tz@Fe<sub>3</sub>O<sub>4</sub>–Pd was easy with an external magnet, and it showed good activity till ten recycles with no substantial decrease of activity in Suzuki-Miyaura cross-coupling and till five recycles in denitrogenative cross-coupling reactions. The Tz@Fe<sub>3</sub>O<sub>4</sub>–Pd nanocatalyst can be further investigated due to its low cost, environmental friendliness, and great catalytic activity in a variety of cross-coupling reactions.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-025-02785-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02785-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在本工作中,通过简单的多步骤合成,采用经济高效的化学物质制备了一种新的磁性纳米颗粒负载的三嗪基钯(Tz@Fe3O4 -Pd)。采用傅里叶变换红外光谱、布鲁诺尔-埃米特-泰勒表面积分析、透射电子显微镜、电感耦合等离子体质谱、能量色散x射线光谱、场发射扫描电子显微镜、x射线粉末衍射、热重分析、x射线光电子能谱和振动样品磁强计等分析技术对Tz@Fe3O4 -Pd纳米磁性催化剂进行了表征。三嗪基团上的氮原子主要作为钯纳米粒子的锚定位点,钯纳米粒子是通过多元醇还原生成的。合成的纳米磁性催化剂Tz@Fe3O4 -Pd在温和环保的反应条件下,对Suzuki-Miyaura交叉偶联和脱氮交叉偶联反应具有优异的催化活性。由于其磁性,Tz@Fe3O4 -Pd在外加磁体条件下易于回收,且在Suzuki-Miyaura交叉偶联反应中具有良好的10次循环活性,在脱氮交叉偶联反应中具有5次循环活性。Tz@Fe3O4 -Pd纳米催化剂具有成本低、环境友好、在多种交叉偶联反应中具有良好的催化活性等优点,值得进一步研究。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fe3O4-Supported Triazine-Palladium(0): An Efficient and Recyclable Nanocatalyst for Suzuki-Miyaura and Denitrogenative Cross‑Coupling

Fe3O4-Supported Triazine-Palladium(0): An Efficient and Recyclable Nanocatalyst for Suzuki-Miyaura and Denitrogenative Cross‑Coupling

In the present work, a new magnetic nanoparticle-supported triazine-based palladium(0) (Tz@Fe3O4–Pd) was prepared by a facile multistep synthesis employing cost-effective chemicals. The Tz@Fe3O4–Pd nanomagnetic catalyst was characterized by various analytical techniques such as Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area analysis, transmission electron microscopy, inductively coupled plasma-mass spectroscopy, energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, X-ray powder diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and vibrating sample magnetometer. The nitrogen atoms contained on the triazine moiety primarily serve as the anchoring sites for the Pd nanoparticles, which are produced through polyol reduction. The synthesized nanomagnetic catalyst Tz@Fe3O4–Pd demonstrated excellent catalytic activity in Suzuki-Miyaura cross-coupling and denitrogenative cross-coupling reactions under mild and environmentally friendly reaction conditions. Due to its magnetic nature, the recovery of the Tz@Fe3O4–Pd was easy with an external magnet, and it showed good activity till ten recycles with no substantial decrease of activity in Suzuki-Miyaura cross-coupling and till five recycles in denitrogenative cross-coupling reactions. The Tz@Fe3O4–Pd nanocatalyst can be further investigated due to its low cost, environmental friendliness, and great catalytic activity in a variety of cross-coupling reactions.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信