利用超声波油水纳米乳液净化锂离子电池黑质†

Chunhong Lei, Karl S. Ryder, Andrew P. Abbott and Jake M. Yang
{"title":"利用超声波油水纳米乳液净化锂离子电池黑质†","authors":"Chunhong Lei, Karl S. Ryder, Andrew P. Abbott and Jake M. Yang","doi":"10.1039/D4SU00771A","DOIUrl":null,"url":null,"abstract":"<p >Long-loop recycling of spent lithium-ion batteries is neither sustainable nor economical at scale. In the absence of design-to-recycle initiatives taken up by cell manufacturers, even for batteries produced today, all-in-one shredding processes are the only practical option to achieve circularity of critical materials. Shredding lithium-ion batteries ultimately produces ‘black mass’ – a low-value commodity comprising a mixture of graphite from the anode and lithium metal oxides from the cathode. Recovery of valuable metals such as cobalt and nickel from black mass using energy-intensive pyro- and hydro-metallurgy processes inevitably destroys the crystalline structure of lithium metal oxides and thus requires further resynthesis of battery material upon isolation and purification. This study presents an efficient process for direct separation of graphite and lithium metal oxides from numerous sources of black mass by utilizing a meta-stable oil-in-water emulsion. The purification of black mass is facilitated by one minute of high-power ultrasonic agitation followed by sieve separation, whereby the ultrasonic process enabling purification requires <em>ca.</em> 1% of the energy for heat removal of the binder. The separation exploits the disparity in hydrophobicity between graphite and lithium metal oxides, with ultrasonic energy enhancing the efficacy of the process to allow separation of cathode and anode counterparts with purity as high as 96% within minutes of operation. This innovative approach offers a promising solution for short-loop recycling of lithium-ion battery black mass.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1516-1523"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00771a?page=search","citationCount":"0","resultStr":"{\"title\":\"Using ultrasonic oil–water nano-emulsions to purify lithium-ion battery black mass†\",\"authors\":\"Chunhong Lei, Karl S. Ryder, Andrew P. Abbott and Jake M. Yang\",\"doi\":\"10.1039/D4SU00771A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Long-loop recycling of spent lithium-ion batteries is neither sustainable nor economical at scale. In the absence of design-to-recycle initiatives taken up by cell manufacturers, even for batteries produced today, all-in-one shredding processes are the only practical option to achieve circularity of critical materials. Shredding lithium-ion batteries ultimately produces ‘black mass’ – a low-value commodity comprising a mixture of graphite from the anode and lithium metal oxides from the cathode. Recovery of valuable metals such as cobalt and nickel from black mass using energy-intensive pyro- and hydro-metallurgy processes inevitably destroys the crystalline structure of lithium metal oxides and thus requires further resynthesis of battery material upon isolation and purification. This study presents an efficient process for direct separation of graphite and lithium metal oxides from numerous sources of black mass by utilizing a meta-stable oil-in-water emulsion. The purification of black mass is facilitated by one minute of high-power ultrasonic agitation followed by sieve separation, whereby the ultrasonic process enabling purification requires <em>ca.</em> 1% of the energy for heat removal of the binder. The separation exploits the disparity in hydrophobicity between graphite and lithium metal oxides, with ultrasonic energy enhancing the efficacy of the process to allow separation of cathode and anode counterparts with purity as high as 96% within minutes of operation. This innovative approach offers a promising solution for short-loop recycling of lithium-ion battery black mass.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 3\",\"pages\":\" 1516-1523\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00771a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00771a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00771a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

废锂离子电池的长循环回收既不可持续,也不经济。在电池制造商没有采取设计回收措施的情况下,即使是今天生产的电池,一体化粉碎过程是实现关键材料循环的唯一实际选择。分解锂离子电池最终会产生“黑色物质”——一种低价值的商品,由阳极的石墨和阴极的锂金属氧化物混合而成。使用高能耗的热法和湿法冶金工艺从黑色物质中回收钴和镍等贵重金属,不可避免地会破坏锂金属氧化物的晶体结构,因此需要在分离和纯化后进一步重新合成电池材料。本研究提出了一种利用亚稳定水包油乳液从多种黑色物质中直接分离石墨和锂金属氧化物的有效方法。通过一分钟的高功率超声波搅拌,然后进行筛分,促进了黑色物质的纯化,其中使纯化的超声波过程需要约1%的能量来去除粘合剂的热量。该分离利用了石墨和锂金属氧化物之间疏水性的差异,超声波能量增强了该工艺的效率,使阴极和阳极在几分钟内分离纯度高达96%。这种创新的方法为锂离子电池黑质量的短循环回收提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Using ultrasonic oil–water nano-emulsions to purify lithium-ion battery black mass†

Using ultrasonic oil–water nano-emulsions to purify lithium-ion battery black mass†

Long-loop recycling of spent lithium-ion batteries is neither sustainable nor economical at scale. In the absence of design-to-recycle initiatives taken up by cell manufacturers, even for batteries produced today, all-in-one shredding processes are the only practical option to achieve circularity of critical materials. Shredding lithium-ion batteries ultimately produces ‘black mass’ – a low-value commodity comprising a mixture of graphite from the anode and lithium metal oxides from the cathode. Recovery of valuable metals such as cobalt and nickel from black mass using energy-intensive pyro- and hydro-metallurgy processes inevitably destroys the crystalline structure of lithium metal oxides and thus requires further resynthesis of battery material upon isolation and purification. This study presents an efficient process for direct separation of graphite and lithium metal oxides from numerous sources of black mass by utilizing a meta-stable oil-in-water emulsion. The purification of black mass is facilitated by one minute of high-power ultrasonic agitation followed by sieve separation, whereby the ultrasonic process enabling purification requires ca. 1% of the energy for heat removal of the binder. The separation exploits the disparity in hydrophobicity between graphite and lithium metal oxides, with ultrasonic energy enhancing the efficacy of the process to allow separation of cathode and anode counterparts with purity as high as 96% within minutes of operation. This innovative approach offers a promising solution for short-loop recycling of lithium-ion battery black mass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信