二氧化碳转化为甲醇的先进催化策略:基于贵金属的多相和电化学方法

Soumalya Roy, Ezhava Manu Manohar, Sujoy Bandyopadhyay, Manik Chandra Singh, Yeji Cha, Soumen Giri, Sharad Lande, Kyungsu Na, Junseong Lee and Sourav Das
{"title":"二氧化碳转化为甲醇的先进催化策略:基于贵金属的多相和电化学方法","authors":"Soumalya Roy, Ezhava Manu Manohar, Sujoy Bandyopadhyay, Manik Chandra Singh, Yeji Cha, Soumen Giri, Sharad Lande, Kyungsu Na, Junseong Lee and Sourav Das","doi":"10.1039/D4SU00749B","DOIUrl":null,"url":null,"abstract":"<p >The next generation is threatened by climate change, the significant impacts of global warming, and an energy crisis. Atmospheric CO<small><sub>2</sub></small> levels have surpassed the critical 400 ppm threshold due to significant reliance on fossil fuels to satisfy the increasing energy demands of our fast-progressing society. An overabundance of manufactured carbon dioxide (CO<small><sub>2</sub></small>) emissions severely disrupts the ecology. The synthesis of methanol by the selective hydrogenation of CO<small><sub>2</sub></small> is a viable approach for generating clean energy and sustainably safeguarding our biosphere. Methanol is a versatile molecule with several uses in the chemical industry as an alternative to fossil fuels. The methanol economy is recognized as a pivotal development in the pursuit of a net zero-emission fuel, representing a crucial stride toward a more sustainable planet. The developing green methanol industry, or renewable methanol initiative, primarily relies on CO<small><sub>2</sub></small> adsorption and usage. This novel technique is essential for mitigating global warming. This review focuses on the synthesis of methanol utilizing noble metal-based catalysts and electrochemical reduction methods, examining the associated thermodynamic challenges and outlining future directions for research. It emphasizes the role of noble metals, including palladium, gold, silver, and rhodium, in enhancing catalytic activity and selectivity during the CO<small><sub>2</sub></small> to methanol conversion process. The incorporation of these sophisticated catalytic processes improves methanol production efficiency and facilitates novel methods for carbon capture and usage, therefore advancing a more sustainable energy framework.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1303-1332"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00749b?page=search","citationCount":"0","resultStr":"{\"title\":\"Advanced catalytic strategies for CO2 to methanol conversion: noble metal-based heterogeneous and electrochemical approaches\",\"authors\":\"Soumalya Roy, Ezhava Manu Manohar, Sujoy Bandyopadhyay, Manik Chandra Singh, Yeji Cha, Soumen Giri, Sharad Lande, Kyungsu Na, Junseong Lee and Sourav Das\",\"doi\":\"10.1039/D4SU00749B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The next generation is threatened by climate change, the significant impacts of global warming, and an energy crisis. Atmospheric CO<small><sub>2</sub></small> levels have surpassed the critical 400 ppm threshold due to significant reliance on fossil fuels to satisfy the increasing energy demands of our fast-progressing society. An overabundance of manufactured carbon dioxide (CO<small><sub>2</sub></small>) emissions severely disrupts the ecology. The synthesis of methanol by the selective hydrogenation of CO<small><sub>2</sub></small> is a viable approach for generating clean energy and sustainably safeguarding our biosphere. Methanol is a versatile molecule with several uses in the chemical industry as an alternative to fossil fuels. The methanol economy is recognized as a pivotal development in the pursuit of a net zero-emission fuel, representing a crucial stride toward a more sustainable planet. The developing green methanol industry, or renewable methanol initiative, primarily relies on CO<small><sub>2</sub></small> adsorption and usage. This novel technique is essential for mitigating global warming. This review focuses on the synthesis of methanol utilizing noble metal-based catalysts and electrochemical reduction methods, examining the associated thermodynamic challenges and outlining future directions for research. It emphasizes the role of noble metals, including palladium, gold, silver, and rhodium, in enhancing catalytic activity and selectivity during the CO<small><sub>2</sub></small> to methanol conversion process. The incorporation of these sophisticated catalytic processes improves methanol production efficiency and facilitates novel methods for carbon capture and usage, therefore advancing a more sustainable energy framework.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 3\",\"pages\":\" 1303-1332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00749b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00749b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00749b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下一代受到气候变化、全球变暖的重大影响和能源危机的威胁。由于严重依赖化石燃料来满足我们快速发展的社会不断增长的能源需求,大气中的二氧化碳水平已经超过了400ppm的临界阈值。过量的人造二氧化碳(CO2)排放严重破坏了生态。二氧化碳选择性加氢合成甲醇是生产清洁能源和可持续保护我们生物圈的可行方法。甲醇是一种用途广泛的分子,在化学工业中作为化石燃料的替代品有多种用途。甲醇经济被认为是追求净零排放燃料的关键发展,代表着迈向更可持续发展的地球的关键一步。发展中的绿色甲醇工业,或可再生甲醇倡议,主要依赖于二氧化碳的吸附和利用。这项新技术对减缓全球变暖至关重要。本文综述了利用贵金属基催化剂和电化学还原方法合成甲醇的研究进展,探讨了相关的热力学挑战,并概述了未来的研究方向。它强调贵金属的作用,包括钯,金,银和铑,在提高催化活性和选择性在二氧化碳转化为甲醇的过程中。这些复杂的催化过程的结合提高了甲醇生产效率,促进了碳捕获和利用的新方法,因此推进了一个更可持续的能源框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advanced catalytic strategies for CO2 to methanol conversion: noble metal-based heterogeneous and electrochemical approaches

Advanced catalytic strategies for CO2 to methanol conversion: noble metal-based heterogeneous and electrochemical approaches

The next generation is threatened by climate change, the significant impacts of global warming, and an energy crisis. Atmospheric CO2 levels have surpassed the critical 400 ppm threshold due to significant reliance on fossil fuels to satisfy the increasing energy demands of our fast-progressing society. An overabundance of manufactured carbon dioxide (CO2) emissions severely disrupts the ecology. The synthesis of methanol by the selective hydrogenation of CO2 is a viable approach for generating clean energy and sustainably safeguarding our biosphere. Methanol is a versatile molecule with several uses in the chemical industry as an alternative to fossil fuels. The methanol economy is recognized as a pivotal development in the pursuit of a net zero-emission fuel, representing a crucial stride toward a more sustainable planet. The developing green methanol industry, or renewable methanol initiative, primarily relies on CO2 adsorption and usage. This novel technique is essential for mitigating global warming. This review focuses on the synthesis of methanol utilizing noble metal-based catalysts and electrochemical reduction methods, examining the associated thermodynamic challenges and outlining future directions for research. It emphasizes the role of noble metals, including palladium, gold, silver, and rhodium, in enhancing catalytic activity and selectivity during the CO2 to methanol conversion process. The incorporation of these sophisticated catalytic processes improves methanol production efficiency and facilitates novel methods for carbon capture and usage, therefore advancing a more sustainable energy framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信