Hao Wen;Peng-Fei Gu;Zi He;Nan Yang;Kwok Wa Leung;Jian-Xiao Wang;Zhen-Hong Fan;Da-Zhi Ding
{"title":"稀疏平面阵列合成的三步映射法","authors":"Hao Wen;Peng-Fei Gu;Zi He;Nan Yang;Kwok Wa Leung;Jian-Xiao Wang;Zhen-Hong Fan;Da-Zhi Ding","doi":"10.1109/TAP.2025.3534418","DOIUrl":null,"url":null,"abstract":"This article proposes an effective approach for synthesizing sparse planar arrays using the three-step mapping (TSM) method. By decomposing the array optimization process into three independent steps: region partitioning, placement along the x-direction, and placement along the y-direction, this approach effectively addresses the challenge of designing sparse planar arrays under multiple constraints, including array aperture, number of elements, and minimum spacing between adjacent elements, while avoiding infeasible solutions. Compared to the existing matrix mapping methods, the proposed approach removes the limitations on the maximum number of elements arranged in a given row or column and is able to offer greater degrees of freedom (DOFs) in element positioning. Numerical simulations demonstrate the effectiveness and reliability of the proposed method, which outperforms the existing matrix mapping methods.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"73 3","pages":"1712-1724"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Three-Step Mapping Method for the Synthesis of Sparse Planar Arrays\",\"authors\":\"Hao Wen;Peng-Fei Gu;Zi He;Nan Yang;Kwok Wa Leung;Jian-Xiao Wang;Zhen-Hong Fan;Da-Zhi Ding\",\"doi\":\"10.1109/TAP.2025.3534418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an effective approach for synthesizing sparse planar arrays using the three-step mapping (TSM) method. By decomposing the array optimization process into three independent steps: region partitioning, placement along the x-direction, and placement along the y-direction, this approach effectively addresses the challenge of designing sparse planar arrays under multiple constraints, including array aperture, number of elements, and minimum spacing between adjacent elements, while avoiding infeasible solutions. Compared to the existing matrix mapping methods, the proposed approach removes the limitations on the maximum number of elements arranged in a given row or column and is able to offer greater degrees of freedom (DOFs) in element positioning. Numerical simulations demonstrate the effectiveness and reliability of the proposed method, which outperforms the existing matrix mapping methods.\",\"PeriodicalId\":13102,\"journal\":{\"name\":\"IEEE Transactions on Antennas and Propagation\",\"volume\":\"73 3\",\"pages\":\"1712-1724\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10869301/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10869301/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Three-Step Mapping Method for the Synthesis of Sparse Planar Arrays
This article proposes an effective approach for synthesizing sparse planar arrays using the three-step mapping (TSM) method. By decomposing the array optimization process into three independent steps: region partitioning, placement along the x-direction, and placement along the y-direction, this approach effectively addresses the challenge of designing sparse planar arrays under multiple constraints, including array aperture, number of elements, and minimum spacing between adjacent elements, while avoiding infeasible solutions. Compared to the existing matrix mapping methods, the proposed approach removes the limitations on the maximum number of elements arranged in a given row or column and is able to offer greater degrees of freedom (DOFs) in element positioning. Numerical simulations demonstrate the effectiveness and reliability of the proposed method, which outperforms the existing matrix mapping methods.
期刊介绍:
IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques