工程漏波天线:调制阻抗表面和辐射特性

IF 4.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kazem Zafari;Homayoon Oraizi;Haddi Ahmadi
{"title":"工程漏波天线:调制阻抗表面和辐射特性","authors":"Kazem Zafari;Homayoon Oraizi;Haddi Ahmadi","doi":"10.1109/TAP.2025.3531114","DOIUrl":null,"url":null,"abstract":"This article investigates the leakage radiation phenomenon between adjacent sinusoidal impedance surfaces, focusing on various structural configurations and their effects. Initially, the radiation between symmetrically placed sinusoidal inductive-impedance surfaces is examined. Nonsymmetric and inverse nonsymmetric configurations incorporating complementary capacitive surfaces are then explored. To enhance the modulation coefficient, square unit cells are transformed into rectangular ones. The Taylor one-parameter distribution (TOPD) method is applied to control leakage values along the antenna, enabling precise engineering of the desired sidelobe level (SLL). Excitation of these structures is accomplished using Vivaldi and inverse Vivaldi transitions. Two prototypes are constructed and tested, demonstrating the ability to steer the main beams from backward to forward, passing through the broadside direction, while achieving bidirectional radiation—an achievement that is difficult to realize with conventional leaky wave antennas (LWAs). The proposed LWAs exhibit wide bandwidth and wide-angle scanning, making them suitable for advanced wireless communication applications. The fabricated prototypes operate effectively from 12 to 22 GHz, achieving a gain range of 10–16 dB.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"73 3","pages":"1482-1495"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Leaky Wave Antennas: Modulated Impedance Surfaces and Radiative Characteristics\",\"authors\":\"Kazem Zafari;Homayoon Oraizi;Haddi Ahmadi\",\"doi\":\"10.1109/TAP.2025.3531114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the leakage radiation phenomenon between adjacent sinusoidal impedance surfaces, focusing on various structural configurations and their effects. Initially, the radiation between symmetrically placed sinusoidal inductive-impedance surfaces is examined. Nonsymmetric and inverse nonsymmetric configurations incorporating complementary capacitive surfaces are then explored. To enhance the modulation coefficient, square unit cells are transformed into rectangular ones. The Taylor one-parameter distribution (TOPD) method is applied to control leakage values along the antenna, enabling precise engineering of the desired sidelobe level (SLL). Excitation of these structures is accomplished using Vivaldi and inverse Vivaldi transitions. Two prototypes are constructed and tested, demonstrating the ability to steer the main beams from backward to forward, passing through the broadside direction, while achieving bidirectional radiation—an achievement that is difficult to realize with conventional leaky wave antennas (LWAs). The proposed LWAs exhibit wide bandwidth and wide-angle scanning, making them suitable for advanced wireless communication applications. The fabricated prototypes operate effectively from 12 to 22 GHz, achieving a gain range of 10–16 dB.\",\"PeriodicalId\":13102,\"journal\":{\"name\":\"IEEE Transactions on Antennas and Propagation\",\"volume\":\"73 3\",\"pages\":\"1482-1495\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10852579/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10852579/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了相邻正弦阻抗面之间的泄漏辐射现象,重点研究了各种结构形式及其影响。首先,研究了对称放置的正弦电感阻抗表面之间的辐射。然后探讨了包含互补电容面的非对称和逆非对称构型。为了提高调制系数,将方形单元格转换为矩形单元格。采用泰勒单参数分布(TOPD)方法控制沿天线的泄漏值,实现所需旁瓣电平(SLL)的精确工程。这些结构的激发是通过维瓦尔第跃迁和逆维瓦尔第跃迁来完成的。两个原型被构建和测试,展示了引导主波束从后到前,通过宽方向,同时实现双向辐射的能力,这是传统漏波天线(LWAs)难以实现的成就。所提出的lwa具有宽带宽和广角扫描,使其适合先进的无线通信应用。制作的原型在12至22 GHz范围内有效工作,增益范围为10-16 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering Leaky Wave Antennas: Modulated Impedance Surfaces and Radiative Characteristics
This article investigates the leakage radiation phenomenon between adjacent sinusoidal impedance surfaces, focusing on various structural configurations and their effects. Initially, the radiation between symmetrically placed sinusoidal inductive-impedance surfaces is examined. Nonsymmetric and inverse nonsymmetric configurations incorporating complementary capacitive surfaces are then explored. To enhance the modulation coefficient, square unit cells are transformed into rectangular ones. The Taylor one-parameter distribution (TOPD) method is applied to control leakage values along the antenna, enabling precise engineering of the desired sidelobe level (SLL). Excitation of these structures is accomplished using Vivaldi and inverse Vivaldi transitions. Two prototypes are constructed and tested, demonstrating the ability to steer the main beams from backward to forward, passing through the broadside direction, while achieving bidirectional radiation—an achievement that is difficult to realize with conventional leaky wave antennas (LWAs). The proposed LWAs exhibit wide bandwidth and wide-angle scanning, making them suitable for advanced wireless communication applications. The fabricated prototypes operate effectively from 12 to 22 GHz, achieving a gain range of 10–16 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信