Nicholas Homrocky;Cody Trevillian;Vasyl Tyberkevych
{"title":"表面自旋与表面声波的磁弹性耦合","authors":"Nicholas Homrocky;Cody Trevillian;Vasyl Tyberkevych","doi":"10.1109/LMAG.2025.3536936","DOIUrl":null,"url":null,"abstract":"Nonreciprocal propagation of surface acoustic waves (SAWs) may be achieved through magneto-elastic coupling with surface spin waves (SSWs). Here, we studied theoretically SAW–SSW coupling in yttrium–iron garnet (YIG)/ gadolinium–gallium garnet (GGG) bilayers magnetized in-plane at an oblique angle to the direction of wave propagation. An expression for the coupling rate that considers actual thickness profiles of both waves has been derived. The effects of the SAW–SSW coupling are most pronounced at the crossing point of the SAW and SSW spectra, which, for typical experimental parameters, occurs at a frequency of about 2 GHz and wavelength 2 µm. Under these conditions, the coupling rate for SSWs localized near the free surface of the YIG layer weakly depends on system parameters and exceeds 25 MHz. In contrast, for the opposite direction of wave propagation, when the SSW is localized near the YIG/GGG interface, the coupling rate rapidly decreases with the increase of YIG thickness, and strong nonreciprocity of the coupling is observed for thicknesses over 0.5 µm. With the increase of YIG thickness above 2.5 µm, coupling of SAW to higher order standing spin waves becomes important, which pollutes the spectrum of hybrid magneto-elastic waves, making observation and practical use of nonreciprocal SAW–SSW coupling more difficult.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magneto-Elastic Coupling of Surface Spin and Surface Acoustic Waves\",\"authors\":\"Nicholas Homrocky;Cody Trevillian;Vasyl Tyberkevych\",\"doi\":\"10.1109/LMAG.2025.3536936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonreciprocal propagation of surface acoustic waves (SAWs) may be achieved through magneto-elastic coupling with surface spin waves (SSWs). Here, we studied theoretically SAW–SSW coupling in yttrium–iron garnet (YIG)/ gadolinium–gallium garnet (GGG) bilayers magnetized in-plane at an oblique angle to the direction of wave propagation. An expression for the coupling rate that considers actual thickness profiles of both waves has been derived. The effects of the SAW–SSW coupling are most pronounced at the crossing point of the SAW and SSW spectra, which, for typical experimental parameters, occurs at a frequency of about 2 GHz and wavelength 2 µm. Under these conditions, the coupling rate for SSWs localized near the free surface of the YIG layer weakly depends on system parameters and exceeds 25 MHz. In contrast, for the opposite direction of wave propagation, when the SSW is localized near the YIG/GGG interface, the coupling rate rapidly decreases with the increase of YIG thickness, and strong nonreciprocity of the coupling is observed for thicknesses over 0.5 µm. With the increase of YIG thickness above 2.5 µm, coupling of SAW to higher order standing spin waves becomes important, which pollutes the spectrum of hybrid magneto-elastic waves, making observation and practical use of nonreciprocal SAW–SSW coupling more difficult.\",\"PeriodicalId\":13040,\"journal\":{\"name\":\"IEEE Magnetics Letters\",\"volume\":\"16 \",\"pages\":\"1-5\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Magnetics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10858296/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10858296/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Magneto-Elastic Coupling of Surface Spin and Surface Acoustic Waves
Nonreciprocal propagation of surface acoustic waves (SAWs) may be achieved through magneto-elastic coupling with surface spin waves (SSWs). Here, we studied theoretically SAW–SSW coupling in yttrium–iron garnet (YIG)/ gadolinium–gallium garnet (GGG) bilayers magnetized in-plane at an oblique angle to the direction of wave propagation. An expression for the coupling rate that considers actual thickness profiles of both waves has been derived. The effects of the SAW–SSW coupling are most pronounced at the crossing point of the SAW and SSW spectra, which, for typical experimental parameters, occurs at a frequency of about 2 GHz and wavelength 2 µm. Under these conditions, the coupling rate for SSWs localized near the free surface of the YIG layer weakly depends on system parameters and exceeds 25 MHz. In contrast, for the opposite direction of wave propagation, when the SSW is localized near the YIG/GGG interface, the coupling rate rapidly decreases with the increase of YIG thickness, and strong nonreciprocity of the coupling is observed for thicknesses over 0.5 µm. With the increase of YIG thickness above 2.5 µm, coupling of SAW to higher order standing spin waves becomes important, which pollutes the spectrum of hybrid magneto-elastic waves, making observation and practical use of nonreciprocal SAW–SSW coupling more difficult.
期刊介绍:
IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest.
IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.