¹⁸F-FDG专用于超高分辨率PET的3d打印放射性幻影

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Ezzat Elmoujarkach;Steven Seeger;Luise Morgner;Fabian Schmidt;Julia G. Mannheim;Christian L. Schmidt;Magdalena Rafecas
{"title":"¹⁸F-FDG专用于超高分辨率PET的3d打印放射性幻影","authors":"Ezzat Elmoujarkach;Steven Seeger;Luise Morgner;Fabian Schmidt;Julia G. Mannheim;Christian L. Schmidt;Magdalena Rafecas","doi":"10.1109/TRPMS.2024.3483233","DOIUrl":null,"url":null,"abstract":"This study explores the potential of digital light processing to 3-D print radioactive phantoms for high-resolution positron emission tomography (PET). Using a slightly modified desktop 3-D printer and mixtures of 18F-FDG (T1/2: 109.8 min) and photopolymer resin, we have printed standardized and custom radioactive objects designed for ultrahigh-resolution PET, also as a first step toward complex geometries. The phantoms were: a flood source to assess uniformity, a two-point phantom for spatial resolution assessment, a multiline phantom for validating submillimeter printing resolution, a fish-like phantom with different activity concentrations, and a 50%-downscaled micro-PET image quality phantom (National Electrical Manufacturers Association NU 4-2008). Positron range effects were examined on the latter using a removable cover. The evaluation relied on planar images from a phosphor imager and tomographic images from a commercial small animal PET scanner. We were able to print radioactive uniform distributions with relative standard deviation below 4.5% and structures as small as 0.3 mm. Our two-point phantom outperformed a commercial one in terms of peak difference (6% versus 72%) and peak-to-valley ratio (75.3 versus 14.1). The fish-like phantom shows that printing hot regions and air cavities onto a uniform background is feasible. Future steps include using longer-lived radionuclides like 89Zr and 22Na.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 3","pages":"362-371"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742298","citationCount":"0","resultStr":"{\"title\":\"Dedicated 3D-Printed Radioactive Phantoms With ¹⁸F-FDG for Ultrahigh-Resolution PET\",\"authors\":\"Ezzat Elmoujarkach;Steven Seeger;Luise Morgner;Fabian Schmidt;Julia G. Mannheim;Christian L. Schmidt;Magdalena Rafecas\",\"doi\":\"10.1109/TRPMS.2024.3483233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the potential of digital light processing to 3-D print radioactive phantoms for high-resolution positron emission tomography (PET). Using a slightly modified desktop 3-D printer and mixtures of 18F-FDG (T1/2: 109.8 min) and photopolymer resin, we have printed standardized and custom radioactive objects designed for ultrahigh-resolution PET, also as a first step toward complex geometries. The phantoms were: a flood source to assess uniformity, a two-point phantom for spatial resolution assessment, a multiline phantom for validating submillimeter printing resolution, a fish-like phantom with different activity concentrations, and a 50%-downscaled micro-PET image quality phantom (National Electrical Manufacturers Association NU 4-2008). Positron range effects were examined on the latter using a removable cover. The evaluation relied on planar images from a phosphor imager and tomographic images from a commercial small animal PET scanner. We were able to print radioactive uniform distributions with relative standard deviation below 4.5% and structures as small as 0.3 mm. Our two-point phantom outperformed a commercial one in terms of peak difference (6% versus 72%) and peak-to-valley ratio (75.3 versus 14.1). The fish-like phantom shows that printing hot regions and air cavities onto a uniform background is feasible. Future steps include using longer-lived radionuclides like 89Zr and 22Na.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"9 3\",\"pages\":\"362-371\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742298\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10742298/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10742298/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本研究探索了数字光处理在高分辨率正电子发射断层扫描(PET)的3d打印放射性幻影中的潜力。使用稍微改进的台式3d打印机和18F-FDG (T1/2: 109.8分钟)和光聚合物树脂的混合物,我们已经打印出了为超高分辨率PET设计的标准化和定制放射性物体,这也是迈向复杂几何形状的第一步。这些幻影是:用于评估均匀性的洪水源,用于空间分辨率评估的两点幻影,用于验证亚毫米打印分辨率的多线幻影,具有不同活动浓度的鱼状幻影,以及缩小50%的微型pet图像质量幻影(国家电气制造商协会NU 4-2008)。正电子范围效应是用一个可移动的盖子来检测的。评估依赖于来自荧光粉成像仪的平面图像和来自商用小动物PET扫描仪的层析图像。我们能够打印出相对标准偏差小于4.5%的放射性均匀分布和小至0.3 mm的结构。我们的两点幻影在峰值差(6%比72%)和峰谷比(75.3比14.1)方面优于商用幻影。鱼状的幻影表明,将热区和空腔打印到统一的背景上是可行的。未来的步骤包括使用寿命更长的放射性核素,如89Zr和22Na。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dedicated 3D-Printed Radioactive Phantoms With ¹⁸F-FDG for Ultrahigh-Resolution PET
This study explores the potential of digital light processing to 3-D print radioactive phantoms for high-resolution positron emission tomography (PET). Using a slightly modified desktop 3-D printer and mixtures of 18F-FDG (T1/2: 109.8 min) and photopolymer resin, we have printed standardized and custom radioactive objects designed for ultrahigh-resolution PET, also as a first step toward complex geometries. The phantoms were: a flood source to assess uniformity, a two-point phantom for spatial resolution assessment, a multiline phantom for validating submillimeter printing resolution, a fish-like phantom with different activity concentrations, and a 50%-downscaled micro-PET image quality phantom (National Electrical Manufacturers Association NU 4-2008). Positron range effects were examined on the latter using a removable cover. The evaluation relied on planar images from a phosphor imager and tomographic images from a commercial small animal PET scanner. We were able to print radioactive uniform distributions with relative standard deviation below 4.5% and structures as small as 0.3 mm. Our two-point phantom outperformed a commercial one in terms of peak difference (6% versus 72%) and peak-to-valley ratio (75.3 versus 14.1). The fish-like phantom shows that printing hot regions and air cavities onto a uniform background is feasible. Future steps include using longer-lived radionuclides like 89Zr and 22Na.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信