{"title":"子结构特征模态的理论与计算","authors":"Mats Gustafsson;Lukas Jelinek;Miloslav Capek;Johan Lundgren;Kurt Schab","doi":"10.1109/TAP.2025.3528478","DOIUrl":null,"url":null,"abstract":"The problem of substructure characteristic modes is developed using a scattering matrix-based formulation, generalizing subregion characteristic mode decomposition to arbitrary computational tools. It is shown that the modes of the scattering formulation are identical to the modes of the classical formulation based on the background Green’s function for lossless systems under conditions where both formulations can be applied. The scattering formulation, however, opens a variety of new subregion scenarios unavailable within previous formulations, including cases with lumped or wave ports or subregions in circuits. Thanks to its scattering nature, the formulation is solver-agnostic with the possibility to utilize an arbitrary full-wave method.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"73 3","pages":"1321-1333"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory and Computation of Substructure Characteristic Modes\",\"authors\":\"Mats Gustafsson;Lukas Jelinek;Miloslav Capek;Johan Lundgren;Kurt Schab\",\"doi\":\"10.1109/TAP.2025.3528478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of substructure characteristic modes is developed using a scattering matrix-based formulation, generalizing subregion characteristic mode decomposition to arbitrary computational tools. It is shown that the modes of the scattering formulation are identical to the modes of the classical formulation based on the background Green’s function for lossless systems under conditions where both formulations can be applied. The scattering formulation, however, opens a variety of new subregion scenarios unavailable within previous formulations, including cases with lumped or wave ports or subregions in circuits. Thanks to its scattering nature, the formulation is solver-agnostic with the possibility to utilize an arbitrary full-wave method.\",\"PeriodicalId\":13102,\"journal\":{\"name\":\"IEEE Transactions on Antennas and Propagation\",\"volume\":\"73 3\",\"pages\":\"1321-1333\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10845083/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10845083/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Theory and Computation of Substructure Characteristic Modes
The problem of substructure characteristic modes is developed using a scattering matrix-based formulation, generalizing subregion characteristic mode decomposition to arbitrary computational tools. It is shown that the modes of the scattering formulation are identical to the modes of the classical formulation based on the background Green’s function for lossless systems under conditions where both formulations can be applied. The scattering formulation, however, opens a variety of new subregion scenarios unavailable within previous formulations, including cases with lumped or wave ports or subregions in circuits. Thanks to its scattering nature, the formulation is solver-agnostic with the possibility to utilize an arbitrary full-wave method.
期刊介绍:
IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques