{"title":"几乎在希尔伯特和巴拿赫空间中都有奥尔巴赫,马库舍维奇和绍德的基地","authors":"Anton Tselishchev","doi":"10.1016/j.jfa.2025.110895","DOIUrl":null,"url":null,"abstract":"<div><div>For any sequence of positive numbers <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> such that <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>∞</mo></math></span> we provide an explicit simple construction of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>-bounded Markushevich basis in a separable Hilbert space which is not strong, or, in other terminology, is not hereditary complete; this condition on the sequence <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is sharp. Using a finite-dimensional version of this construction, Dvoretzky's theorem and a construction of Vershynin, we conclude that in any Banach space for any sequence of positive numbers <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> such that <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mo>∞</mo></math></span> there exists a <span><math><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>-bounded Markushevich basis which is not a Schauder basis after any permutation of its elements.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 1","pages":"Article 110895"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost Auerbach, Markushevich and Schauder bases in Hilbert and Banach spaces\",\"authors\":\"Anton Tselishchev\",\"doi\":\"10.1016/j.jfa.2025.110895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For any sequence of positive numbers <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> such that <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>∞</mo></math></span> we provide an explicit simple construction of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>-bounded Markushevich basis in a separable Hilbert space which is not strong, or, in other terminology, is not hereditary complete; this condition on the sequence <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is sharp. Using a finite-dimensional version of this construction, Dvoretzky's theorem and a construction of Vershynin, we conclude that in any Banach space for any sequence of positive numbers <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> such that <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mo>∞</mo></math></span> there exists a <span><math><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>-bounded Markushevich basis which is not a Schauder basis after any permutation of its elements.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 1\",\"pages\":\"Article 110895\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625000771\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000771","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Almost Auerbach, Markushevich and Schauder bases in Hilbert and Banach spaces
For any sequence of positive numbers such that we provide an explicit simple construction of -bounded Markushevich basis in a separable Hilbert space which is not strong, or, in other terminology, is not hereditary complete; this condition on the sequence is sharp. Using a finite-dimensional version of this construction, Dvoretzky's theorem and a construction of Vershynin, we conclude that in any Banach space for any sequence of positive numbers such that there exists a -bounded Markushevich basis which is not a Schauder basis after any permutation of its elements.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis