几乎在希尔伯特和巴拿赫空间中都有奥尔巴赫,马库舍维奇和绍德的基地

IF 1.7 2区 数学 Q1 MATHEMATICS
Anton Tselishchev
{"title":"几乎在希尔伯特和巴拿赫空间中都有奥尔巴赫,马库舍维奇和绍德的基地","authors":"Anton Tselishchev","doi":"10.1016/j.jfa.2025.110895","DOIUrl":null,"url":null,"abstract":"<div><div>For any sequence of positive numbers <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> such that <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>∞</mo></math></span> we provide an explicit simple construction of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>-bounded Markushevich basis in a separable Hilbert space which is not strong, or, in other terminology, is not hereditary complete; this condition on the sequence <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is sharp. Using a finite-dimensional version of this construction, Dvoretzky's theorem and a construction of Vershynin, we conclude that in any Banach space for any sequence of positive numbers <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> such that <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mo>∞</mo></math></span> there exists a <span><math><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>-bounded Markushevich basis which is not a Schauder basis after any permutation of its elements.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 1","pages":"Article 110895"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost Auerbach, Markushevich and Schauder bases in Hilbert and Banach spaces\",\"authors\":\"Anton Tselishchev\",\"doi\":\"10.1016/j.jfa.2025.110895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For any sequence of positive numbers <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> such that <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>∞</mo></math></span> we provide an explicit simple construction of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>-bounded Markushevich basis in a separable Hilbert space which is not strong, or, in other terminology, is not hereditary complete; this condition on the sequence <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> is sharp. Using a finite-dimensional version of this construction, Dvoretzky's theorem and a construction of Vershynin, we conclude that in any Banach space for any sequence of positive numbers <span><math><msubsup><mrow><mo>(</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> such that <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msubsup><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mo>∞</mo></math></span> there exists a <span><math><mo>(</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>ε</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>-bounded Markushevich basis which is not a Schauder basis after any permutation of its elements.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 1\",\"pages\":\"Article 110895\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625000771\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000771","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任意正数序列(εn)n=1∞使得∑n=1∞εn=∞,我们给出了可分离Hilbert空间中(1+εn)有界Markushevich基的显式简单构造,该构造不是强的,或者换句话说,不是遗传完全的;这个条件对于序列(εn)n=1∞是尖锐的。利用该构造的有限维版本,Dvoretzky定理和Vershynin的构造,我们得到了在任意Banach空间中,对于任意正数序列(εn)n=1∞使得∑n=1∞εn2=∞,存在一个(1+εn)有界的Markushevich基,该基在其元素的任意排列后都不是Schauder基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost Auerbach, Markushevich and Schauder bases in Hilbert and Banach spaces
For any sequence of positive numbers (εn)n=1 such that n=1εn= we provide an explicit simple construction of (1+εn)-bounded Markushevich basis in a separable Hilbert space which is not strong, or, in other terminology, is not hereditary complete; this condition on the sequence (εn)n=1 is sharp. Using a finite-dimensional version of this construction, Dvoretzky's theorem and a construction of Vershynin, we conclude that in any Banach space for any sequence of positive numbers (εn)n=1 such that n=1εn2= there exists a (1+εn)-bounded Markushevich basis which is not a Schauder basis after any permutation of its elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信