解某些二次丢番图方程的类域和形式类群

IF 0.6 3区 数学 Q3 MATHEMATICS
Ho Yun Jung , Ja Kyung Koo , Dong Hwa Shin , Dong Sung Yoon
{"title":"解某些二次丢番图方程的类域和形式类群","authors":"Ho Yun Jung ,&nbsp;Ja Kyung Koo ,&nbsp;Dong Hwa Shin ,&nbsp;Dong Sung Yoon","doi":"10.1016/j.jnt.2025.01.018","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>K</em> be an imaginary quadratic field and <span><math><mi>O</mi></math></span> be an order in <em>K</em>. We construct class fields associated with form class groups which are isomorphic to certain <span><math><mi>O</mi></math></span>-ideal class groups in terms of the theory of canonical models due to Shimura. As its applications, by using such class fields, for a positive integer <em>n</em> we first find primes of the form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>n</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with additional conditions on <em>x</em> and <em>y</em>. Second, by utilizing these form class groups, we derive a congruence relation on special values of a modular function of higher level as an analogue of Kronecker's congruence relation.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"275 ","pages":"Pages 1-34"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Class fields and form class groups for solving certain quadratic Diophantine equations\",\"authors\":\"Ho Yun Jung ,&nbsp;Ja Kyung Koo ,&nbsp;Dong Hwa Shin ,&nbsp;Dong Sung Yoon\",\"doi\":\"10.1016/j.jnt.2025.01.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>K</em> be an imaginary quadratic field and <span><math><mi>O</mi></math></span> be an order in <em>K</em>. We construct class fields associated with form class groups which are isomorphic to certain <span><math><mi>O</mi></math></span>-ideal class groups in terms of the theory of canonical models due to Shimura. As its applications, by using such class fields, for a positive integer <em>n</em> we first find primes of the form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>n</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with additional conditions on <em>x</em> and <em>y</em>. Second, by utilizing these form class groups, we derive a congruence relation on special values of a modular function of higher level as an analogue of Kronecker's congruence relation.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"275 \",\"pages\":\"Pages 1-34\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25000423\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25000423","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设K为虚二次域,O为K中的一个阶,根据Shimura的正则模型理论,构造与若干O-理想类群同构的形式类群相关的类域。作为它的应用,我们首先利用这些类域,对正整数n求出x和y上附加条件的x2+ny2形式的素数。其次,利用这些形式类群,我们推导出高阶模函数特殊值上的同余关系,作为Kronecker同余关系的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Class fields and form class groups for solving certain quadratic Diophantine equations
Let K be an imaginary quadratic field and O be an order in K. We construct class fields associated with form class groups which are isomorphic to certain O-ideal class groups in terms of the theory of canonical models due to Shimura. As its applications, by using such class fields, for a positive integer n we first find primes of the form x2+ny2 with additional conditions on x and y. Second, by utilizing these form class groups, we derive a congruence relation on special values of a modular function of higher level as an analogue of Kronecker's congruence relation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信