综合能源系统中发电和氢基矢量耦合存储的自由化能源市场投资决策:基于博弈论模型的方法

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Akhil Joseph , Adib Allahham , Sara Louise Walker
{"title":"综合能源系统中发电和氢基矢量耦合存储的自由化能源市场投资决策:基于博弈论模型的方法","authors":"Akhil Joseph ,&nbsp;Adib Allahham ,&nbsp;Sara Louise Walker","doi":"10.1016/j.ijepes.2025.110518","DOIUrl":null,"url":null,"abstract":"<div><div>Meeting carbon reduction targets and enhancing energy supply flexibility necessitate the integration of natural gas and electricity networks, coupled with increased adoption of renewable energy. Bidirectional hydrogen-based Vector-Coupling Storage (VCS) offers a promising avenue for efficiently utilising surplus power from renewables, linking hydrogen as an energy carrier and storage with the Integrated Energy System (IES). This paper introduces a game-theoretic planning model for IES, encompassing natural gas, electricity, and independent VCS participants in a liberalised market. A game-theoretic model for capacity investment under an oligopolistic market structure in the liberalised energy market context is developed to capture the strategic behaviour of market participants. An annual investment model and an hourly operation simulation model are used to evaluate the value of hydrogen production, coupling components, and vector coupling storage in long-term investment decisions. The model, applied to the North of Tyne region in the UK, employs a scaled-down Future Energy Scenario dataset, reflecting a regional trajectory towards a net-zero emission target by 2050. Simulation results highlight market liberalisation’s crucial role in attracting investments in renewable energy and hydrogen systems. Conversion efficiencies of electrolysers and fuel cells emerge as key profitability determinants, emphasising the significance of achieving at least 50% round trip efficiency for profitable vector coupling storage. The findings quantify the advantages of large-scale VCS investments over Li-ion battery storage.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"166 ","pages":"Article 110518"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investment decisions in a liberalised energy market with generation and hydrogen-based vector coupling storage in Integrated Energy System: A game-theoretic model-based approach\",\"authors\":\"Akhil Joseph ,&nbsp;Adib Allahham ,&nbsp;Sara Louise Walker\",\"doi\":\"10.1016/j.ijepes.2025.110518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Meeting carbon reduction targets and enhancing energy supply flexibility necessitate the integration of natural gas and electricity networks, coupled with increased adoption of renewable energy. Bidirectional hydrogen-based Vector-Coupling Storage (VCS) offers a promising avenue for efficiently utilising surplus power from renewables, linking hydrogen as an energy carrier and storage with the Integrated Energy System (IES). This paper introduces a game-theoretic planning model for IES, encompassing natural gas, electricity, and independent VCS participants in a liberalised market. A game-theoretic model for capacity investment under an oligopolistic market structure in the liberalised energy market context is developed to capture the strategic behaviour of market participants. An annual investment model and an hourly operation simulation model are used to evaluate the value of hydrogen production, coupling components, and vector coupling storage in long-term investment decisions. The model, applied to the North of Tyne region in the UK, employs a scaled-down Future Energy Scenario dataset, reflecting a regional trajectory towards a net-zero emission target by 2050. Simulation results highlight market liberalisation’s crucial role in attracting investments in renewable energy and hydrogen systems. Conversion efficiencies of electrolysers and fuel cells emerge as key profitability determinants, emphasising the significance of achieving at least 50% round trip efficiency for profitable vector coupling storage. The findings quantify the advantages of large-scale VCS investments over Li-ion battery storage.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"166 \",\"pages\":\"Article 110518\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061525000699\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525000699","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

实现碳减排目标和提高能源供应灵活性需要天然气和电力网络的整合,同时增加可再生能源的采用。双向氢基矢量耦合存储(VCS)为有效利用可再生能源的剩余电力提供了一条有前途的途径,将氢作为能源载体和存储与综合能源系统(IES)联系起来。本文介绍了IES的博弈论规划模型,包括开放市场中的天然气,电力和独立的VCS参与者。为了捕捉市场参与者的战略行为,建立了一个在能源市场自由化背景下寡占市场结构下产能投资的博弈论模型。采用年度投资模型和小时运行模拟模型对制氢、耦合组件和矢量耦合存储在长期投资决策中的价值进行了评估。该模型应用于英国泰恩北部地区,采用了一个缩小的未来能源情景数据集,反映了到2050年实现净零排放目标的区域轨迹。模拟结果强调了市场自由化在吸引可再生能源和氢系统投资方面的关键作用。电解槽和燃料电池的转换效率成为关键的盈利决定因素,强调实现至少50%的往返效率对于有利可图的矢量耦合存储的重要性。研究结果量化了大规模VCS投资相对于锂离子电池存储的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investment decisions in a liberalised energy market with generation and hydrogen-based vector coupling storage in Integrated Energy System: A game-theoretic model-based approach
Meeting carbon reduction targets and enhancing energy supply flexibility necessitate the integration of natural gas and electricity networks, coupled with increased adoption of renewable energy. Bidirectional hydrogen-based Vector-Coupling Storage (VCS) offers a promising avenue for efficiently utilising surplus power from renewables, linking hydrogen as an energy carrier and storage with the Integrated Energy System (IES). This paper introduces a game-theoretic planning model for IES, encompassing natural gas, electricity, and independent VCS participants in a liberalised market. A game-theoretic model for capacity investment under an oligopolistic market structure in the liberalised energy market context is developed to capture the strategic behaviour of market participants. An annual investment model and an hourly operation simulation model are used to evaluate the value of hydrogen production, coupling components, and vector coupling storage in long-term investment decisions. The model, applied to the North of Tyne region in the UK, employs a scaled-down Future Energy Scenario dataset, reflecting a regional trajectory towards a net-zero emission target by 2050. Simulation results highlight market liberalisation’s crucial role in attracting investments in renewable energy and hydrogen systems. Conversion efficiencies of electrolysers and fuel cells emerge as key profitability determinants, emphasising the significance of achieving at least 50% round trip efficiency for profitable vector coupling storage. The findings quantify the advantages of large-scale VCS investments over Li-ion battery storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信