关于无2k2图中安全支配数的一个注记

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Xiaodong Chen, Tianhao Li, Jiayuan Zhang
{"title":"关于无2k2图中安全支配数的一个注记","authors":"Xiaodong Chen,&nbsp;Tianhao Li,&nbsp;Jiayuan Zhang","doi":"10.1016/j.dam.2025.02.019","DOIUrl":null,"url":null,"abstract":"<div><div>A dominating set <span><math><mi>D</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is secure if for each vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mi>D</mi><mo>,</mo></mrow></math></span>\n <span><math><mi>D</mi></math></span> contains a neighbor <span><math><mi>u</mi></math></span> of <span><math><mi>v</mi></math></span> such that <span><math><mrow><mrow><mo>(</mo><mi>D</mi><mo>−</mo><mrow><mo>{</mo><mi>u</mi><mo>}</mo></mrow><mo>)</mo></mrow><mo>∪</mo><mrow><mo>{</mo><mi>v</mi><mo>}</mo></mrow></mrow></math></span> is a dominating set of <span><math><mi>G</mi></math></span>. The minimum cardinality of a secure dominating set in <span><math><mi>G</mi></math></span> is the secure domination number of <span><math><mi>G</mi></math></span> and denoted by <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> A graph is <span><math><mrow><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-free if it does not contain two independent edges as an induced subgraph. Let <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the independence number of <span><math><mrow><mi>G</mi><mo>.</mo></mrow></math></span> Several results gave the upper bound of <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> by a function of <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> In this note, we shows that <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> for every <span><math><mrow><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-free graph <span><math><mrow><mi>G</mi><mo>;</mo></mrow></math></span> moreover, we give an example to show the bound in our result is best possible.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"368 ","pages":"Pages 162-164"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on secure domination number in 2K2-free graphs\",\"authors\":\"Xiaodong Chen,&nbsp;Tianhao Li,&nbsp;Jiayuan Zhang\",\"doi\":\"10.1016/j.dam.2025.02.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A dominating set <span><math><mi>D</mi></math></span> of a graph <span><math><mi>G</mi></math></span> is secure if for each vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mi>D</mi><mo>,</mo></mrow></math></span>\\n <span><math><mi>D</mi></math></span> contains a neighbor <span><math><mi>u</mi></math></span> of <span><math><mi>v</mi></math></span> such that <span><math><mrow><mrow><mo>(</mo><mi>D</mi><mo>−</mo><mrow><mo>{</mo><mi>u</mi><mo>}</mo></mrow><mo>)</mo></mrow><mo>∪</mo><mrow><mo>{</mo><mi>v</mi><mo>}</mo></mrow></mrow></math></span> is a dominating set of <span><math><mi>G</mi></math></span>. The minimum cardinality of a secure dominating set in <span><math><mi>G</mi></math></span> is the secure domination number of <span><math><mi>G</mi></math></span> and denoted by <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> A graph is <span><math><mrow><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-free if it does not contain two independent edges as an induced subgraph. Let <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the independence number of <span><math><mrow><mi>G</mi><mo>.</mo></mrow></math></span> Several results gave the upper bound of <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> by a function of <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> In this note, we shows that <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> for every <span><math><mrow><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>-free graph <span><math><mrow><mi>G</mi><mo>;</mo></mrow></math></span> moreover, we give an example to show the bound in our result is best possible.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"368 \",\"pages\":\"Pages 162-164\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25000939\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25000939","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图G的控制集D是安全的,如果对于每个顶点v∈v (G)−D, D包含v的一个邻居u,使得(D - {u})∪{v}是G的一个控制集。G中安全控制集的最小基数是G的安全控制数,用γs(G)表示。如果一个图不包含两个独立的边作为诱导子图,那么它就是无2k2的。设α(G)为G的独立数,用α(G)的函数给出了γs(G)的上界。在本文中,我们证明了γs(G)≤α(G)+1对于每个2K2-free图G;此外,我们给出了一个例子来证明我们的结果中的界是最好的可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on secure domination number in 2K2-free graphs
A dominating set D of a graph G is secure if for each vertex vV(G)D, D contains a neighbor u of v such that (D{u}){v} is a dominating set of G. The minimum cardinality of a secure dominating set in G is the secure domination number of G and denoted by γs(G). A graph is 2K2-free if it does not contain two independent edges as an induced subgraph. Let α(G) denote the independence number of G. Several results gave the upper bound of γs(G) by a function of α(G). In this note, we shows that γs(G)α(G)+1 for every 2K2-free graph G; moreover, we give an example to show the bound in our result is best possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信