与对照组相比,患有纤维肌痛综合征的青少年关节活动过度是否加剧了着陆和跳跃策略的改变?

IF 1.4 3区 医学 Q4 ENGINEERING, BIOMEDICAL
Tessa C. Hulburt , William R. Black , Scott Bonnette , Staci Thomas , Andrew Schille , Chris DiCesare , Matthew S. Briggs , Sylvia Ounpuu , Susmita Kashikar-Zuck , Greg D. Myer
{"title":"与对照组相比,患有纤维肌痛综合征的青少年关节活动过度是否加剧了着陆和跳跃策略的改变?","authors":"Tessa C. Hulburt ,&nbsp;William R. Black ,&nbsp;Scott Bonnette ,&nbsp;Staci Thomas ,&nbsp;Andrew Schille ,&nbsp;Chris DiCesare ,&nbsp;Matthew S. Briggs ,&nbsp;Sylvia Ounpuu ,&nbsp;Susmita Kashikar-Zuck ,&nbsp;Greg D. Myer","doi":"10.1016/j.clinbiomech.2025.106466","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Joint hypermobility is common in children and persists in various genetic and connective tissue disorders, including conditions characterized by chronic musculoskeletal pain (i.e. Juvenile Fibromyalgia Syndrome), which involves movement dysfunction. It is unclear if joint hypermobility contributes to this dysfunction. This study investigated whether generalized joint hypermobility is associated with altered landing/jumping biomechanics in adolescents with juvenile fibromyalgia syndrome compared to controls.</div></div><div><h3>Methods</h3><div>Adolescents with juvenile fibromyalgia syndrome and hypermobility (<em>n</em> = 17), juvenile fibromyalgia syndrome without hypermobility (n = 17), and non-hypermobile controls (n = 17) performed a landing/jumping task while 3D-motion capture and ground reaction force data were collected. Timewise data were compared using statistical parametric mapping.</div></div><div><h3>Findings</h3><div>Both groups with juvenile fibromyalgia syndrome exhibited altered lower extremity biomechanics compared to controls, including increased sagittal hip and ankle kinematics (<em>P</em> &lt; 0.0001), ∼25 % reduced sagittal knee and ankle kinetics (<em>P</em> ≤ 0.038) and ∼ 2.5× greater knee internal rotation (<em>P</em> &lt; 0.0001) during landing/jumping, as well as ∼75 % and ∼ 20 % reduced ground reaction force during initial landing and jumping (<em>P</em> &lt; 0.0001), respectively. Both groups with juvenile fibromyalgia syndrome, demonstrated 17–26 % reduced landing depth (<em>P</em> &lt; 0.0001;d ≤ 1.79) and 26 % reduced jump height (<em>P</em> ≤ 0.01;d ≤ 0.86), indicating inefficient momentum absorption.</div></div><div><h3>Interpretation</h3><div>Altered biomechanics observed in both groups with juvenile fibromyalgia syndrome may reflect an attempt to avoid pain. While hypermobility did not significantly differentiate the groups with juvenile fibromyalgia syndrome overall, it was associated with more inefficiencies. This study highlights the need for hypermobility-specific movement assessments to understand movement-associated pain, strength, and kinesthetics to improve early identification and treatment of youth with hypermobility at risk for chronic pain and functional limitations.</div></div>","PeriodicalId":50992,"journal":{"name":"Clinical Biomechanics","volume":"124 ","pages":"Article 106466"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does joint hypermobility exacerbate altered landing and jumping strategies in adolescents with fibromyalgia syndrome compared to controls?\",\"authors\":\"Tessa C. Hulburt ,&nbsp;William R. Black ,&nbsp;Scott Bonnette ,&nbsp;Staci Thomas ,&nbsp;Andrew Schille ,&nbsp;Chris DiCesare ,&nbsp;Matthew S. Briggs ,&nbsp;Sylvia Ounpuu ,&nbsp;Susmita Kashikar-Zuck ,&nbsp;Greg D. Myer\",\"doi\":\"10.1016/j.clinbiomech.2025.106466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Joint hypermobility is common in children and persists in various genetic and connective tissue disorders, including conditions characterized by chronic musculoskeletal pain (i.e. Juvenile Fibromyalgia Syndrome), which involves movement dysfunction. It is unclear if joint hypermobility contributes to this dysfunction. This study investigated whether generalized joint hypermobility is associated with altered landing/jumping biomechanics in adolescents with juvenile fibromyalgia syndrome compared to controls.</div></div><div><h3>Methods</h3><div>Adolescents with juvenile fibromyalgia syndrome and hypermobility (<em>n</em> = 17), juvenile fibromyalgia syndrome without hypermobility (n = 17), and non-hypermobile controls (n = 17) performed a landing/jumping task while 3D-motion capture and ground reaction force data were collected. Timewise data were compared using statistical parametric mapping.</div></div><div><h3>Findings</h3><div>Both groups with juvenile fibromyalgia syndrome exhibited altered lower extremity biomechanics compared to controls, including increased sagittal hip and ankle kinematics (<em>P</em> &lt; 0.0001), ∼25 % reduced sagittal knee and ankle kinetics (<em>P</em> ≤ 0.038) and ∼ 2.5× greater knee internal rotation (<em>P</em> &lt; 0.0001) during landing/jumping, as well as ∼75 % and ∼ 20 % reduced ground reaction force during initial landing and jumping (<em>P</em> &lt; 0.0001), respectively. Both groups with juvenile fibromyalgia syndrome, demonstrated 17–26 % reduced landing depth (<em>P</em> &lt; 0.0001;d ≤ 1.79) and 26 % reduced jump height (<em>P</em> ≤ 0.01;d ≤ 0.86), indicating inefficient momentum absorption.</div></div><div><h3>Interpretation</h3><div>Altered biomechanics observed in both groups with juvenile fibromyalgia syndrome may reflect an attempt to avoid pain. While hypermobility did not significantly differentiate the groups with juvenile fibromyalgia syndrome overall, it was associated with more inefficiencies. This study highlights the need for hypermobility-specific movement assessments to understand movement-associated pain, strength, and kinesthetics to improve early identification and treatment of youth with hypermobility at risk for chronic pain and functional limitations.</div></div>\",\"PeriodicalId\":50992,\"journal\":{\"name\":\"Clinical Biomechanics\",\"volume\":\"124 \",\"pages\":\"Article 106466\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268003325000385\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268003325000385","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:关节活动过度在儿童中很常见,并持续存在于各种遗传和结缔组织疾病中,包括以慢性肌肉骨骼疼痛(即青少年纤维肌痛综合征)为特征的疾病,其中包括运动功能障碍。目前尚不清楚关节活动过度是否导致了这种功能障碍。本研究调查了与对照组相比,青少年纤维肌痛综合征患者的广泛性关节过度活动是否与着陆/跳跃生物力学改变有关。方法对伴有纤维肌痛综合征和活动过度的青少年(n = 17)、无活动过度的青少年纤维肌痛综合征(n = 17)和非活动过度的对照组(n = 17)进行着陆/跳跃任务,同时收集3d运动捕捉和地面反作用力数据。采用统计参数映射对时间数据进行比较。与对照组相比,两组青少年纤维肌痛综合征患者下肢生物力学均发生改变,包括髋和踝关节矢状位运动学增加(P <;0.0001),膝关节和踝关节矢状位动力学降低~ 25% (P≤0.038),膝关节内旋增大~ 2.5倍(P <;0.0001),以及在初始着陆和跳跃过程中减少约75%和约20%的地面反作用力(P <;分别为0.0001)。两组青少年纤维肌痛综合征患者均表现出17 - 26%的着陆深度降低(P <;0.0001, d≤1.79),跳跃高度降低26% (P≤0.01,d≤0.86),说明动量吸收效率不高。解释:在两组青少年纤维肌痛综合征患者中观察到的生物力学改变可能反映了一种避免疼痛的尝试。虽然总体而言,过度活动并不能显著区分青少年纤维肌痛综合征的组,但它与更多的效率低下有关。这项研究强调了对多动性运动评估的必要性,以了解运动相关的疼痛、力量和运动美学,从而提高对有慢性疼痛和功能限制风险的多动性青年的早期识别和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Does joint hypermobility exacerbate altered landing and jumping strategies in adolescents with fibromyalgia syndrome compared to controls?

Background

Joint hypermobility is common in children and persists in various genetic and connective tissue disorders, including conditions characterized by chronic musculoskeletal pain (i.e. Juvenile Fibromyalgia Syndrome), which involves movement dysfunction. It is unclear if joint hypermobility contributes to this dysfunction. This study investigated whether generalized joint hypermobility is associated with altered landing/jumping biomechanics in adolescents with juvenile fibromyalgia syndrome compared to controls.

Methods

Adolescents with juvenile fibromyalgia syndrome and hypermobility (n = 17), juvenile fibromyalgia syndrome without hypermobility (n = 17), and non-hypermobile controls (n = 17) performed a landing/jumping task while 3D-motion capture and ground reaction force data were collected. Timewise data were compared using statistical parametric mapping.

Findings

Both groups with juvenile fibromyalgia syndrome exhibited altered lower extremity biomechanics compared to controls, including increased sagittal hip and ankle kinematics (P < 0.0001), ∼25 % reduced sagittal knee and ankle kinetics (P ≤ 0.038) and ∼ 2.5× greater knee internal rotation (P < 0.0001) during landing/jumping, as well as ∼75 % and ∼ 20 % reduced ground reaction force during initial landing and jumping (P < 0.0001), respectively. Both groups with juvenile fibromyalgia syndrome, demonstrated 17–26 % reduced landing depth (P < 0.0001;d ≤ 1.79) and 26 % reduced jump height (P ≤ 0.01;d ≤ 0.86), indicating inefficient momentum absorption.

Interpretation

Altered biomechanics observed in both groups with juvenile fibromyalgia syndrome may reflect an attempt to avoid pain. While hypermobility did not significantly differentiate the groups with juvenile fibromyalgia syndrome overall, it was associated with more inefficiencies. This study highlights the need for hypermobility-specific movement assessments to understand movement-associated pain, strength, and kinesthetics to improve early identification and treatment of youth with hypermobility at risk for chronic pain and functional limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Biomechanics
Clinical Biomechanics 医学-工程:生物医学
CiteScore
3.30
自引率
5.60%
发文量
189
审稿时长
12.3 weeks
期刊介绍: Clinical Biomechanics is an international multidisciplinary journal of biomechanics with a focus on medical and clinical applications of new knowledge in the field. The science of biomechanics helps explain the causes of cell, tissue, organ and body system disorders, and supports clinicians in the diagnosis, prognosis and evaluation of treatment methods and technologies. Clinical Biomechanics aims to strengthen the links between laboratory and clinic by publishing cutting-edge biomechanics research which helps to explain the causes of injury and disease, and which provides evidence contributing to improved clinical management. A rigorous peer review system is employed and every attempt is made to process and publish top-quality papers promptly. Clinical Biomechanics explores all facets of body system, organ, tissue and cell biomechanics, with an emphasis on medical and clinical applications of the basic science aspects. The role of basic science is therefore recognized in a medical or clinical context. The readership of the journal closely reflects its multi-disciplinary contents, being a balance of scientists, engineers and clinicians. The contents are in the form of research papers, brief reports, review papers and correspondence, whilst special interest issues and supplements are published from time to time. Disciplines covered include biomechanics and mechanobiology at all scales, bioengineering and use of tissue engineering and biomaterials for clinical applications, biophysics, as well as biomechanical aspects of medical robotics, ergonomics, physical and occupational therapeutics and rehabilitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信