在深度学习模型中利用空间电荷描述符:实现气液平衡的高精度预测

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Hsiu-Min Hung, Ying-Chieh Hung
{"title":"在深度学习模型中利用空间电荷描述符:实现气液平衡的高精度预测","authors":"Hsiu-Min Hung,&nbsp;Ying-Chieh Hung","doi":"10.1016/j.jtice.2025.106054","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Vapor-liquid equilibrium (VLE) data is essential for separation processes, but traditional models such as UNIFAC require extensive experimental parameters. To improve the efficiency of VLE modeling and reduce the dependence on experiments, we developed machine learning models using COSMO-based σ-profiles and MACCS keys.</div></div><div><h3>Methods</h3><div>Two deep learning models, MLP-COSMO and MLP-MACCS, are developed. MLP-COSMO, based on σ-profiles, allows high-precision phase equilibrium predictions using only molecular structures, eliminating the need for experimental interaction parameters. The pressure range spans 0.947 to 817 kPa and the temperature range spans 199.93 to 548.15 K.</div></div><div><h3>Significant findings</h3><div>By utilizing σ-profiles, our developed model MLP-COSMO, which surpasses COSMO-SAC (2010) in accuracy and achieves a level comparable to UNIFAC, with specific results of R²-y = 0.9926, R²-P = 0.9889, <em>AAD</em> − <em>y</em>(%) = 1.04% and <em>AARD</em> − <em>P</em>(%) = 2.88%, evaluated on a test dataset excluded from training process. This study successfully demonstrated that high-precision VLE predictions can be achieved using only a molecular structure, effectively addressing the challenge of missing experimental parameters. Furthermore, the results indicate that the spatial charge descriptor (σ-profile), encapsulating molecular polarity information, is considered to be more suitable as input data for machine learning models in VLE prediction than structural fingerprints of MACCS.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"171 ","pages":"Article 106054"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging spatial charge descriptor in deep learning models: Toward highly accurate prediction of vapor-liquid equilibrium\",\"authors\":\"Hsiu-Min Hung,&nbsp;Ying-Chieh Hung\",\"doi\":\"10.1016/j.jtice.2025.106054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Vapor-liquid equilibrium (VLE) data is essential for separation processes, but traditional models such as UNIFAC require extensive experimental parameters. To improve the efficiency of VLE modeling and reduce the dependence on experiments, we developed machine learning models using COSMO-based σ-profiles and MACCS keys.</div></div><div><h3>Methods</h3><div>Two deep learning models, MLP-COSMO and MLP-MACCS, are developed. MLP-COSMO, based on σ-profiles, allows high-precision phase equilibrium predictions using only molecular structures, eliminating the need for experimental interaction parameters. The pressure range spans 0.947 to 817 kPa and the temperature range spans 199.93 to 548.15 K.</div></div><div><h3>Significant findings</h3><div>By utilizing σ-profiles, our developed model MLP-COSMO, which surpasses COSMO-SAC (2010) in accuracy and achieves a level comparable to UNIFAC, with specific results of R²-y = 0.9926, R²-P = 0.9889, <em>AAD</em> − <em>y</em>(%) = 1.04% and <em>AARD</em> − <em>P</em>(%) = 2.88%, evaluated on a test dataset excluded from training process. This study successfully demonstrated that high-precision VLE predictions can be achieved using only a molecular structure, effectively addressing the challenge of missing experimental parameters. Furthermore, the results indicate that the spatial charge descriptor (σ-profile), encapsulating molecular polarity information, is considered to be more suitable as input data for machine learning models in VLE prediction than structural fingerprints of MACCS.</div></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":\"171 \",\"pages\":\"Article 106054\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107025001075\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025001075","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

汽液平衡(VLE)数据对分离过程至关重要,但传统模型如UNIFAC需要大量的实验参数。为了提高VLE建模的效率,减少对实验的依赖,我们开发了基于cosmos的σ-profile和MACCS密钥的机器学习模型。方法建立MLP-COSMO和MLP-MACCS两个深度学习模型。基于σ-谱的MLP-COSMO可以仅使用分子结构进行高精度的相平衡预测,从而消除了对实验相互作用参数的需要。压力范围为0.947 ~ 817 kPa,温度范围为199.93 ~ 548.15 K。通过使用σ-profile,我们开发的MLP-COSMO模型在精度上超过cosmos - sac(2010),达到与UNIFAC相当的水平,具体结果为R²-y = 0.9926, R²-P = 0.9889, AAD -y (%) = 1.04%, AARD -P(%) = 2.88%,在排除训练过程的测试数据集上进行评估。该研究成功地证明了仅使用分子结构就可以实现高精度的VLE预测,有效地解决了缺少实验参数的挑战。此外,研究结果表明,包含分子极性信息的空间电荷描述子(σ-剖面)比MACCS结构指纹图谱更适合作为VLE预测机器学习模型的输入数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Leveraging spatial charge descriptor in deep learning models: Toward highly accurate prediction of vapor-liquid equilibrium

Leveraging spatial charge descriptor in deep learning models: Toward highly accurate prediction of vapor-liquid equilibrium

Background

Vapor-liquid equilibrium (VLE) data is essential for separation processes, but traditional models such as UNIFAC require extensive experimental parameters. To improve the efficiency of VLE modeling and reduce the dependence on experiments, we developed machine learning models using COSMO-based σ-profiles and MACCS keys.

Methods

Two deep learning models, MLP-COSMO and MLP-MACCS, are developed. MLP-COSMO, based on σ-profiles, allows high-precision phase equilibrium predictions using only molecular structures, eliminating the need for experimental interaction parameters. The pressure range spans 0.947 to 817 kPa and the temperature range spans 199.93 to 548.15 K.

Significant findings

By utilizing σ-profiles, our developed model MLP-COSMO, which surpasses COSMO-SAC (2010) in accuracy and achieves a level comparable to UNIFAC, with specific results of R²-y = 0.9926, R²-P = 0.9889, AADy(%) = 1.04% and AARDP(%) = 2.88%, evaluated on a test dataset excluded from training process. This study successfully demonstrated that high-precision VLE predictions can be achieved using only a molecular structure, effectively addressing the challenge of missing experimental parameters. Furthermore, the results indicate that the spatial charge descriptor (σ-profile), encapsulating molecular polarity information, is considered to be more suitable as input data for machine learning models in VLE prediction than structural fingerprints of MACCS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信