学习和记忆巩固的不同突触机制

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Yuki Murai , Akihiro Goto
{"title":"学习和记忆巩固的不同突触机制","authors":"Yuki Murai ,&nbsp;Akihiro Goto","doi":"10.1016/j.conb.2025.102996","DOIUrl":null,"url":null,"abstract":"<div><div>Memory consolidation is defined as the process by which labile short-term memories are stabilized and transformed into persistent long-term memories. This process relies heavily on synaptic plasticity, particularly long-term potentiation and depression (LTP and LTD, respectively), which have been extensively investigated in previous studies. The advent of optical tools that allow the observation and manipulation of LTP and LTD <em>in vivo</em> has advanced our understanding of their roles in learning and memory consolidation. In addition to LTP and LTD, recent research has indicated the presence of a more rapid plasticity mechanism, termed behavioral timescale synaptic plasticity (BTSP), which is crucial for encoding space and context. Sharp-wave ripples and sleep also play indispensable roles in memory consolidation, with some studies alternately linking them to LTP and LTD. At the systems level, sharp-wave ripples and sleep contribute to the transmission of information to broader brain areas, as well as the modification of synaptic strength in cortical areas for the long-term storage of memory. Furthermore, recent findings have highlighted the role of non-neuronal cells in learning, as they modulate synaptic plasticity in various ways.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"92 ","pages":"Article 102996"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diverse synaptic mechanisms underlying learning and memory consolidation\",\"authors\":\"Yuki Murai ,&nbsp;Akihiro Goto\",\"doi\":\"10.1016/j.conb.2025.102996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Memory consolidation is defined as the process by which labile short-term memories are stabilized and transformed into persistent long-term memories. This process relies heavily on synaptic plasticity, particularly long-term potentiation and depression (LTP and LTD, respectively), which have been extensively investigated in previous studies. The advent of optical tools that allow the observation and manipulation of LTP and LTD <em>in vivo</em> has advanced our understanding of their roles in learning and memory consolidation. In addition to LTP and LTD, recent research has indicated the presence of a more rapid plasticity mechanism, termed behavioral timescale synaptic plasticity (BTSP), which is crucial for encoding space and context. Sharp-wave ripples and sleep also play indispensable roles in memory consolidation, with some studies alternately linking them to LTP and LTD. At the systems level, sharp-wave ripples and sleep contribute to the transmission of information to broader brain areas, as well as the modification of synaptic strength in cortical areas for the long-term storage of memory. Furthermore, recent findings have highlighted the role of non-neuronal cells in learning, as they modulate synaptic plasticity in various ways.</div></div>\",\"PeriodicalId\":10999,\"journal\":{\"name\":\"Current Opinion in Neurobiology\",\"volume\":\"92 \",\"pages\":\"Article 102996\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959438825000273\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000273","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

记忆巩固被定义为不稳定的短期记忆被稳定并转化为持久的长期记忆的过程。这一过程在很大程度上依赖于突触可塑性,特别是长期增强和抑制(LTP和LTD分别),这在以前的研究中得到了广泛的研究。光学工具的出现使我们能够在体内观察和操作LTP和LTD,这促进了我们对它们在学习和记忆巩固中的作用的理解。除了LTP和LTD之外,最近的研究表明存在一种更快速的可塑性机制,称为行为时间尺度突触可塑性(BTSP),它对编码空间和上下文至关重要。尖波涟漪和睡眠在记忆巩固中也扮演着不可或缺的角色,一些研究将它们与LTP和LTD交替联系起来。在系统层面上,锐波涟漪和睡眠有助于信息向更广阔的大脑区域传递,同时也有助于皮层区域突触强度的改变,以实现记忆的长期储存。此外,最近的研究结果强调了非神经元细胞在学习中的作用,因为它们以各种方式调节突触可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Diverse synaptic mechanisms underlying learning and memory consolidation

Diverse synaptic mechanisms underlying learning and memory consolidation
Memory consolidation is defined as the process by which labile short-term memories are stabilized and transformed into persistent long-term memories. This process relies heavily on synaptic plasticity, particularly long-term potentiation and depression (LTP and LTD, respectively), which have been extensively investigated in previous studies. The advent of optical tools that allow the observation and manipulation of LTP and LTD in vivo has advanced our understanding of their roles in learning and memory consolidation. In addition to LTP and LTD, recent research has indicated the presence of a more rapid plasticity mechanism, termed behavioral timescale synaptic plasticity (BTSP), which is crucial for encoding space and context. Sharp-wave ripples and sleep also play indispensable roles in memory consolidation, with some studies alternately linking them to LTP and LTD. At the systems level, sharp-wave ripples and sleep contribute to the transmission of information to broader brain areas, as well as the modification of synaptic strength in cortical areas for the long-term storage of memory. Furthermore, recent findings have highlighted the role of non-neuronal cells in learning, as they modulate synaptic plasticity in various ways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Neurobiology
Current Opinion in Neurobiology 医学-神经科学
CiteScore
11.10
自引率
1.80%
发文量
130
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance. The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives. Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories: -Neurobiology of Disease- Neurobiology of Behavior- Cellular Neuroscience- Systems Neuroscience- Developmental Neuroscience- Neurobiology of Learning and Plasticity- Molecular Neuroscience- Computational Neuroscience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信