实验数据驱动的富锂nasicon型固体电解质组成和工艺条件的有效探索

Hayami Takeda , Kento Murakami , Yudai Yamaguchi , Hiroko Fukuda , Naoto Tanibata , Masanobu Nakayama , Takaaki Natori , Yasuharu Ono , Naohiko Saito
{"title":"实验数据驱动的富锂nasicon型固体电解质组成和工艺条件的有效探索","authors":"Hayami Takeda ,&nbsp;Kento Murakami ,&nbsp;Yudai Yamaguchi ,&nbsp;Hiroko Fukuda ,&nbsp;Naoto Tanibata ,&nbsp;Masanobu Nakayama ,&nbsp;Takaaki Natori ,&nbsp;Yasuharu Ono ,&nbsp;Naohiko Saito","doi":"10.1016/j.nxmate.2025.100574","DOIUrl":null,"url":null,"abstract":"<div><div>LiZr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> has garnered widespread interest as a solid electrolyte for all-solid-state batteries. However, its Li ionic conductivity remains insufficient for practical use. Although attempts have been made to improve the Li ionic conductivity by doping with cations and controlling the synthesis conditions, the exploration space is vast, and optimisation remains challenging. In this study, the amount of dopants and heating conditions for Li<sub>1+x+2y</sub>Ca<sub>y</sub>Zr<sub>2-y</sub>Si<sub>x</sub>P<sub>3-x</sub>O<sub>12</sub> co-doped with Ca<sup>2+</sup> and Si<sup>4+</sup> were optimised via experimental synthesis, evaluation, and Bayesian optimisation (BO) cycles. The BO technique suggests the next experimental samples in each cycle and reduces the number of experimental cycles by almost 80 % compared with an exhaustive search. In addition, the experimental results were subjected to machine-learning regression analysis to analyse the factors affecting the Li-ion conductivity.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100574"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental data-driven efficient exploration of the composition and process conditions of Li-rich NASICON-type solid electrolytes\",\"authors\":\"Hayami Takeda ,&nbsp;Kento Murakami ,&nbsp;Yudai Yamaguchi ,&nbsp;Hiroko Fukuda ,&nbsp;Naoto Tanibata ,&nbsp;Masanobu Nakayama ,&nbsp;Takaaki Natori ,&nbsp;Yasuharu Ono ,&nbsp;Naohiko Saito\",\"doi\":\"10.1016/j.nxmate.2025.100574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>LiZr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> has garnered widespread interest as a solid electrolyte for all-solid-state batteries. However, its Li ionic conductivity remains insufficient for practical use. Although attempts have been made to improve the Li ionic conductivity by doping with cations and controlling the synthesis conditions, the exploration space is vast, and optimisation remains challenging. In this study, the amount of dopants and heating conditions for Li<sub>1+x+2y</sub>Ca<sub>y</sub>Zr<sub>2-y</sub>Si<sub>x</sub>P<sub>3-x</sub>O<sub>12</sub> co-doped with Ca<sup>2+</sup> and Si<sup>4+</sup> were optimised via experimental synthesis, evaluation, and Bayesian optimisation (BO) cycles. The BO technique suggests the next experimental samples in each cycle and reduces the number of experimental cycles by almost 80 % compared with an exhaustive search. In addition, the experimental results were subjected to machine-learning regression analysis to analyse the factors affecting the Li-ion conductivity.</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"8 \",\"pages\":\"Article 100574\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822825000929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

lizz2 (PO4)3作为全固态电池的固体电解质已经引起了广泛的关注。然而,它的锂离子电导率仍然不足以实际应用。虽然已经尝试通过掺杂阳离子和控制合成条件来提高Li离子的电导率,但探索空间巨大,优化仍然具有挑战性。在本研究中,通过实验合成、评价和贝叶斯优化(BO)循环,优化了Ca2+和Si4+共掺杂Li1+x+2yCayZr2-ySixP3-xO12的掺杂量和加热条件。BO技术在每个循环中建议下一个实验样本,与穷举搜索相比,实验循环的数量减少了近80% %。此外,对实验结果进行机器学习回归分析,分析影响锂离子电导率的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental data-driven efficient exploration of the composition and process conditions of Li-rich NASICON-type solid electrolytes
LiZr2(PO4)3 has garnered widespread interest as a solid electrolyte for all-solid-state batteries. However, its Li ionic conductivity remains insufficient for practical use. Although attempts have been made to improve the Li ionic conductivity by doping with cations and controlling the synthesis conditions, the exploration space is vast, and optimisation remains challenging. In this study, the amount of dopants and heating conditions for Li1+x+2yCayZr2-ySixP3-xO12 co-doped with Ca2+ and Si4+ were optimised via experimental synthesis, evaluation, and Bayesian optimisation (BO) cycles. The BO technique suggests the next experimental samples in each cycle and reduces the number of experimental cycles by almost 80 % compared with an exhaustive search. In addition, the experimental results were subjected to machine-learning regression analysis to analyse the factors affecting the Li-ion conductivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信