大规模非对称矩阵低秩逼近的子空间迭代广义Nyström方法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yatian Wang , Nian-Ci Wu , Yuqiu Liu , Hua Xiang
{"title":"大规模非对称矩阵低秩逼近的子空间迭代广义Nyström方法","authors":"Yatian Wang ,&nbsp;Nian-Ci Wu ,&nbsp;Yuqiu Liu ,&nbsp;Hua Xiang","doi":"10.1016/j.aml.2025.109531","DOIUrl":null,"url":null,"abstract":"<div><div>In numerical linear algebra, finding the low-rank approximation of large-scale nonsymmetric matrices is a core problem. In this work, we combine the generalized Nyström method and randomized subspace iteration to propose a new low-rank approximation algorithm, which we refer to as the generalized Nyström method with subspace iteration. Moreover, utilizing the projection theory, we perform an in-depth error analysis from a novel perspective and establish the theoretical error bound of the proposed algorithm. Finally, numerical experiments show that our method outperforms the randomized singular value decomposition and generalized Nyström method in accuracy, especially when applied to a matrix with slowly decaying singular values.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"166 ","pages":"Article 109531"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized Nyström method with subspace iteration for low-rank approximations of large-scale nonsymmetric matrices\",\"authors\":\"Yatian Wang ,&nbsp;Nian-Ci Wu ,&nbsp;Yuqiu Liu ,&nbsp;Hua Xiang\",\"doi\":\"10.1016/j.aml.2025.109531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In numerical linear algebra, finding the low-rank approximation of large-scale nonsymmetric matrices is a core problem. In this work, we combine the generalized Nyström method and randomized subspace iteration to propose a new low-rank approximation algorithm, which we refer to as the generalized Nyström method with subspace iteration. Moreover, utilizing the projection theory, we perform an in-depth error analysis from a novel perspective and establish the theoretical error bound of the proposed algorithm. Finally, numerical experiments show that our method outperforms the randomized singular value decomposition and generalized Nyström method in accuracy, especially when applied to a matrix with slowly decaying singular values.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"166 \",\"pages\":\"Article 109531\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925000813\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000813","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在数值线性代数中,求解大规模非对称矩阵的低秩逼近是一个核心问题。本文将广义Nyström方法与随机化子空间迭代相结合,提出了一种新的低秩逼近算法,我们称之为广义Nyström方法与子空间迭代。此外,利用投影理论,从新的角度进行了深入的误差分析,建立了算法的理论误差界。最后,数值实验表明,该方法在精度上优于随机奇异值分解和广义Nyström方法,尤其适用于奇异值缓慢衰减的矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized Nyström method with subspace iteration for low-rank approximations of large-scale nonsymmetric matrices
In numerical linear algebra, finding the low-rank approximation of large-scale nonsymmetric matrices is a core problem. In this work, we combine the generalized Nyström method and randomized subspace iteration to propose a new low-rank approximation algorithm, which we refer to as the generalized Nyström method with subspace iteration. Moreover, utilizing the projection theory, we perform an in-depth error analysis from a novel perspective and establish the theoretical error bound of the proposed algorithm. Finally, numerical experiments show that our method outperforms the randomized singular value decomposition and generalized Nyström method in accuracy, especially when applied to a matrix with slowly decaying singular values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信