阔叶次生林与针叶林林地边缘对土壤线虫群落结构的影响

IF 2 3区 农林科学 Q3 ECOLOGY
Yudai Kitagami , Yota Imao , Yosuke Matsuda
{"title":"阔叶次生林与针叶林林地边缘对土壤线虫群落结构的影响","authors":"Yudai Kitagami ,&nbsp;Yota Imao ,&nbsp;Yosuke Matsuda","doi":"10.1016/j.pedobi.2025.151032","DOIUrl":null,"url":null,"abstract":"<div><div>Habitat edges between two forest types significantly affect the community structure and dynamics of soil organisms Nematodes are a major group of soil microfauna and the most abundant animals on Earth. This study aimed to determine the edge effects of two forest types on soil nematode community composition. We hypothesized that nematode diversity and abundance would be greater in forest edges due to increased heterogeneity of aboveground litter and belowground root traits at the boundary between two forest types, as well as microclimatic variation, enhanced resource inputs, higher plant diversity, and unique soil moisture dynamics characteristic of edge environments. The soil was collected from two adjacent forests, a broadleaf <em>Quercus serrata</em> forest and a coniferous <em>Cryptomeria japonica</em> plantation, with the zone where the two forests transition into one another being referred to as the \"forest edge”. Soil nematodes were morphologically identified at the genus/family level and examined for both community structure and trophic composition. Our results showed that there was a significant positive correlation between the relative abundance of herbivorous nematodes and the physical distance from the broadleaf forest to the <em>C. japonica</em> plantation. The diameter of coniferous <em>C. japonica</em> fine roots were greater than those of broadleaf <em>Q. serrata</em>, suggesting that herbivorous nematodes had easily access to edible resources leading to an increase their populations. Moreover, the nematode community structures had a spatial autocorrelation within a 32 m range, their community structures changed significantly from broadleaf forests to <em>C. japonica</em> plantations and that soil pH and C/N significantly influenced the structuring of nematode communities. This study showed that nematode taxonomic and trophic compositions can be influenced by tree root traits within a range of several tens of meters around forest edges facing different forest types. Our results highlighted that forest edges enhance soil nematode taxonomic turnover.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"109 ","pages":"Article 151032"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of forest edges on soil nematode community structures between broadleaf secondary forest and coniferous plantation\",\"authors\":\"Yudai Kitagami ,&nbsp;Yota Imao ,&nbsp;Yosuke Matsuda\",\"doi\":\"10.1016/j.pedobi.2025.151032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Habitat edges between two forest types significantly affect the community structure and dynamics of soil organisms Nematodes are a major group of soil microfauna and the most abundant animals on Earth. This study aimed to determine the edge effects of two forest types on soil nematode community composition. We hypothesized that nematode diversity and abundance would be greater in forest edges due to increased heterogeneity of aboveground litter and belowground root traits at the boundary between two forest types, as well as microclimatic variation, enhanced resource inputs, higher plant diversity, and unique soil moisture dynamics characteristic of edge environments. The soil was collected from two adjacent forests, a broadleaf <em>Quercus serrata</em> forest and a coniferous <em>Cryptomeria japonica</em> plantation, with the zone where the two forests transition into one another being referred to as the \\\"forest edge”. Soil nematodes were morphologically identified at the genus/family level and examined for both community structure and trophic composition. Our results showed that there was a significant positive correlation between the relative abundance of herbivorous nematodes and the physical distance from the broadleaf forest to the <em>C. japonica</em> plantation. The diameter of coniferous <em>C. japonica</em> fine roots were greater than those of broadleaf <em>Q. serrata</em>, suggesting that herbivorous nematodes had easily access to edible resources leading to an increase their populations. Moreover, the nematode community structures had a spatial autocorrelation within a 32 m range, their community structures changed significantly from broadleaf forests to <em>C. japonica</em> plantations and that soil pH and C/N significantly influenced the structuring of nematode communities. This study showed that nematode taxonomic and trophic compositions can be influenced by tree root traits within a range of several tens of meters around forest edges facing different forest types. Our results highlighted that forest edges enhance soil nematode taxonomic turnover.</div></div>\",\"PeriodicalId\":49711,\"journal\":{\"name\":\"Pedobiologia\",\"volume\":\"109 \",\"pages\":\"Article 151032\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pedobiologia\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031405625000137\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405625000137","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线虫是土壤微动物的主要类群,也是地球上数量最多的动物。本研究旨在探讨两种森林类型对土壤线虫群落组成的边缘效应。研究认为,两种林型边界处地上凋落物和地下根系性状异质性增加、小气候变化、资源投入增加、植物多样性增加以及边缘环境独特的土壤水分动态特征等因素均可能导致森林边缘线虫的多样性和丰度更高。土壤是从两个相邻的森林中收集的,一个是阔叶的锯齿栎林,一个是针叶的日本柳杉人工林,两个森林相互过渡的区域被称为“森林边缘”。在属/科水平上对土壤线虫进行了形态鉴定,并对群落结构和营养成分进行了研究。结果表明,草食性线虫的相对丰度与阔叶林到粳稻人工林的物理距离呈显著正相关。针叶刺桐细根直径大于阔叶刺桐细根直径,说明草食性线虫容易获取可食性资源,从而增加了种群数量。线虫群落结构在32 m范围内具有空间自相关性,从阔叶林到粳稻人工林,线虫群落结构发生显著变化,土壤pH和C/N显著影响线虫群落结构。研究表明,不同森林类型的线虫的分类和营养组成在森林边缘周围几十米范围内会受到根系性状的影响。结果表明,森林边缘增强了土壤线虫的分类周转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of forest edges on soil nematode community structures between broadleaf secondary forest and coniferous plantation
Habitat edges between two forest types significantly affect the community structure and dynamics of soil organisms Nematodes are a major group of soil microfauna and the most abundant animals on Earth. This study aimed to determine the edge effects of two forest types on soil nematode community composition. We hypothesized that nematode diversity and abundance would be greater in forest edges due to increased heterogeneity of aboveground litter and belowground root traits at the boundary between two forest types, as well as microclimatic variation, enhanced resource inputs, higher plant diversity, and unique soil moisture dynamics characteristic of edge environments. The soil was collected from two adjacent forests, a broadleaf Quercus serrata forest and a coniferous Cryptomeria japonica plantation, with the zone where the two forests transition into one another being referred to as the "forest edge”. Soil nematodes were morphologically identified at the genus/family level and examined for both community structure and trophic composition. Our results showed that there was a significant positive correlation between the relative abundance of herbivorous nematodes and the physical distance from the broadleaf forest to the C. japonica plantation. The diameter of coniferous C. japonica fine roots were greater than those of broadleaf Q. serrata, suggesting that herbivorous nematodes had easily access to edible resources leading to an increase their populations. Moreover, the nematode community structures had a spatial autocorrelation within a 32 m range, their community structures changed significantly from broadleaf forests to C. japonica plantations and that soil pH and C/N significantly influenced the structuring of nematode communities. This study showed that nematode taxonomic and trophic compositions can be influenced by tree root traits within a range of several tens of meters around forest edges facing different forest types. Our results highlighted that forest edges enhance soil nematode taxonomic turnover.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pedobiologia
Pedobiologia 环境科学-生态学
CiteScore
4.20
自引率
8.70%
发文量
38
审稿时长
64 days
期刊介绍: Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments. Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions. We publish: original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects); descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research; innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and short notes reporting novel observations of ecological significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信