{"title":"一维Munk边界层方程的紧凑格式","authors":"M. Ben-Artzi , J.-P. Croisille , D. Fishelov","doi":"10.1016/j.cam.2025.116595","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a two-scale compact finite difference scheme for the equation <span><span><span>(MK-1D)</span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>β</mi><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mi>u</mi><mo>+</mo><mi>ɛ</mi><msup><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow><mo>)</mo></mrow></mrow><mrow><mn>4</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><mi>u</mi><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>This equation serves as a model for the nonlinear barotropic equation (NB) governing oceanic flows. <span><span><span>(NB)</span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>Δ</mi><mi>ψ</mi><mo>+</mo><msup><mrow><mo>∇</mo></mrow><mrow><mo>⊥</mo></mrow></msup><mi>ψ</mi><mo>.</mo><mo>∇</mo><mi>Δ</mi><mi>ψ</mi><mo>+</mo><mi>β</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>ψ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>H</mi></mrow></mfrac><msub><mrow><mrow><mo>(</mo><mo>∇</mo><mo>×</mo><mi>τ</mi><mo>)</mo></mrow></mrow><mrow><mi>v</mi></mrow></msub><mo>−</mo><mi>μ</mi><mi>Δ</mi><mi>ψ</mi><mo>+</mo><mi>ɛ</mi><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>ψ</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>τ</mi></math></span> are the streamfunction and the wind stress tensor, respectively. This equation encodes the <em>western boundary layer problem</em> (Ghil et al. 2008) for the potential vorticity <span><math><mi>ψ</mi></math></span>, which corresponds to the sharp contrast between the gyres flow in the oceanic circulation at mid-latitude and the strong western boundary currents. Numerical results for Equation (MK-1D) show that, with this two-scale scheme, high order accuracy is preserved for <span><math><mi>u</mi></math></span> and <span><math><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow><mo>)</mo></mrow><mi>u</mi></mrow></math></span> both in the boundary layer and in the central zone of the domain. The test cases are taken from Chekroun et al. 2020.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"466 ","pages":"Article 116595"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A compact scheme for the Munk boundary-layer equation in one dimension\",\"authors\":\"M. Ben-Artzi , J.-P. Croisille , D. Fishelov\",\"doi\":\"10.1016/j.cam.2025.116595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce a two-scale compact finite difference scheme for the equation <span><span><span>(MK-1D)</span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>β</mi><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mi>u</mi><mo>+</mo><mi>ɛ</mi><msup><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow><mo>)</mo></mrow></mrow><mrow><mn>4</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><mi>u</mi><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>This equation serves as a model for the nonlinear barotropic equation (NB) governing oceanic flows. <span><span><span>(NB)</span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>Δ</mi><mi>ψ</mi><mo>+</mo><msup><mrow><mo>∇</mo></mrow><mrow><mo>⊥</mo></mrow></msup><mi>ψ</mi><mo>.</mo><mo>∇</mo><mi>Δ</mi><mi>ψ</mi><mo>+</mo><mi>β</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>ψ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>H</mi></mrow></mfrac><msub><mrow><mrow><mo>(</mo><mo>∇</mo><mo>×</mo><mi>τ</mi><mo>)</mo></mrow></mrow><mrow><mi>v</mi></mrow></msub><mo>−</mo><mi>μ</mi><mi>Δ</mi><mi>ψ</mi><mo>+</mo><mi>ɛ</mi><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>ψ</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>τ</mi></math></span> are the streamfunction and the wind stress tensor, respectively. This equation encodes the <em>western boundary layer problem</em> (Ghil et al. 2008) for the potential vorticity <span><math><mi>ψ</mi></math></span>, which corresponds to the sharp contrast between the gyres flow in the oceanic circulation at mid-latitude and the strong western boundary currents. Numerical results for Equation (MK-1D) show that, with this two-scale scheme, high order accuracy is preserved for <span><math><mi>u</mi></math></span> and <span><math><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow><mo>)</mo></mrow><mi>u</mi></mrow></math></span> both in the boundary layer and in the central zone of the domain. The test cases are taken from Chekroun et al. 2020.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"466 \",\"pages\":\"Article 116595\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725001104\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725001104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文给出了方程(MK-1D)−βddxu+ β (ddx)4u=f,x∈(a,b)u(a)=u(b)=u ' (a)=u ' (b)=0的二尺度紧致差分格式。该方程可作为控制海洋流动的非线性正压方程(NB)的模型。(NB)∂tΔψ+∇⊥ψ。∇Δψ+β∂xψ= 1 h(∇×τ)v−μΔψ+ɛΔ2ψ,ψ(x, y, t)和τ是streamfunction风应力张量,分别。该方程编码了西边界层问题(Ghil et al. 2008)的位涡度ψ,对应了中纬度海洋环流中的环流与强西边界层流之间的强烈对比。对方程(MK-1D)的数值计算结果表明,在这种双尺度格式下,u和(ddx)u在边界层和区域中心区都保持了高阶精度。测试用例取自Chekroun et al. 2020。
A compact scheme for the Munk boundary-layer equation in one dimension
In this paper, we introduce a two-scale compact finite difference scheme for the equation (MK-1D)This equation serves as a model for the nonlinear barotropic equation (NB) governing oceanic flows. (NB)where and are the streamfunction and the wind stress tensor, respectively. This equation encodes the western boundary layer problem (Ghil et al. 2008) for the potential vorticity , which corresponds to the sharp contrast between the gyres flow in the oceanic circulation at mid-latitude and the strong western boundary currents. Numerical results for Equation (MK-1D) show that, with this two-scale scheme, high order accuracy is preserved for and both in the boundary layer and in the central zone of the domain. The test cases are taken from Chekroun et al. 2020.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.