一维Munk边界层方程的紧凑格式

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
M. Ben-Artzi , J.-P. Croisille , D. Fishelov
{"title":"一维Munk边界层方程的紧凑格式","authors":"M. Ben-Artzi ,&nbsp;J.-P. Croisille ,&nbsp;D. Fishelov","doi":"10.1016/j.cam.2025.116595","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a two-scale compact finite difference scheme for the equation <span><span><span>(MK-1D)</span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>β</mi><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mi>u</mi><mo>+</mo><mi>ɛ</mi><msup><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow><mo>)</mo></mrow></mrow><mrow><mn>4</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><mi>u</mi><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>This equation serves as a model for the nonlinear barotropic equation (NB) governing oceanic flows. <span><span><span>(NB)</span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>Δ</mi><mi>ψ</mi><mo>+</mo><msup><mrow><mo>∇</mo></mrow><mrow><mo>⊥</mo></mrow></msup><mi>ψ</mi><mo>.</mo><mo>∇</mo><mi>Δ</mi><mi>ψ</mi><mo>+</mo><mi>β</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>ψ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>H</mi></mrow></mfrac><msub><mrow><mrow><mo>(</mo><mo>∇</mo><mo>×</mo><mi>τ</mi><mo>)</mo></mrow></mrow><mrow><mi>v</mi></mrow></msub><mo>−</mo><mi>μ</mi><mi>Δ</mi><mi>ψ</mi><mo>+</mo><mi>ɛ</mi><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>ψ</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>τ</mi></math></span> are the streamfunction and the wind stress tensor, respectively. This equation encodes the <em>western boundary layer problem</em> (Ghil et al. 2008) for the potential vorticity <span><math><mi>ψ</mi></math></span>, which corresponds to the sharp contrast between the gyres flow in the oceanic circulation at mid-latitude and the strong western boundary currents. Numerical results for Equation (MK-1D) show that, with this two-scale scheme, high order accuracy is preserved for <span><math><mi>u</mi></math></span> and <span><math><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow><mo>)</mo></mrow><mi>u</mi></mrow></math></span> both in the boundary layer and in the central zone of the domain. The test cases are taken from Chekroun et al. 2020.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"466 ","pages":"Article 116595"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A compact scheme for the Munk boundary-layer equation in one dimension\",\"authors\":\"M. Ben-Artzi ,&nbsp;J.-P. Croisille ,&nbsp;D. Fishelov\",\"doi\":\"10.1016/j.cam.2025.116595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce a two-scale compact finite difference scheme for the equation <span><span><span>(MK-1D)</span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><mo>−</mo><mi>β</mi><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac><mi>u</mi><mo>+</mo><mi>ɛ</mi><msup><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow><mo>)</mo></mrow></mrow><mrow><mn>4</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><mi>u</mi><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>This equation serves as a model for the nonlinear barotropic equation (NB) governing oceanic flows. <span><span><span>(NB)</span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>Δ</mi><mi>ψ</mi><mo>+</mo><msup><mrow><mo>∇</mo></mrow><mrow><mo>⊥</mo></mrow></msup><mi>ψ</mi><mo>.</mo><mo>∇</mo><mi>Δ</mi><mi>ψ</mi><mo>+</mo><mi>β</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>ψ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>H</mi></mrow></mfrac><msub><mrow><mrow><mo>(</mo><mo>∇</mo><mo>×</mo><mi>τ</mi><mo>)</mo></mrow></mrow><mrow><mi>v</mi></mrow></msub><mo>−</mo><mi>μ</mi><mi>Δ</mi><mi>ψ</mi><mo>+</mo><mi>ɛ</mi><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>ψ</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>τ</mi></math></span> are the streamfunction and the wind stress tensor, respectively. This equation encodes the <em>western boundary layer problem</em> (Ghil et al. 2008) for the potential vorticity <span><math><mi>ψ</mi></math></span>, which corresponds to the sharp contrast between the gyres flow in the oceanic circulation at mid-latitude and the strong western boundary currents. Numerical results for Equation (MK-1D) show that, with this two-scale scheme, high order accuracy is preserved for <span><math><mi>u</mi></math></span> and <span><math><mrow><mrow><mo>(</mo><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow><mo>)</mo></mrow><mi>u</mi></mrow></math></span> both in the boundary layer and in the central zone of the domain. The test cases are taken from Chekroun et al. 2020.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"466 \",\"pages\":\"Article 116595\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725001104\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725001104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了方程(MK-1D)−βddxu+ β (ddx)4u=f,x∈(a,b)u(a)=u(b)=u ' (a)=u ' (b)=0的二尺度紧致差分格式。该方程可作为控制海洋流动的非线性正压方程(NB)的模型。(NB)∂tΔψ+∇⊥ψ。∇Δψ+β∂xψ= 1 h(∇×τ)v−μΔψ+ɛΔ2ψ,ψ(x, y, t)和τ是streamfunction风应力张量,分别。该方程编码了西边界层问题(Ghil et al. 2008)的位涡度ψ,对应了中纬度海洋环流中的环流与强西边界层流之间的强烈对比。对方程(MK-1D)的数值计算结果表明,在这种双尺度格式下,u和(ddx)u在边界层和区域中心区都保持了高阶精度。测试用例取自Chekroun et al. 2020。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A compact scheme for the Munk boundary-layer equation in one dimension
In this paper, we introduce a two-scale compact finite difference scheme for the equation (MK-1D)βddxu+ɛ(ddx)4u=f,x(a,b)u(a)=u(b)=u(a)=u(b)=0.This equation serves as a model for the nonlinear barotropic equation (NB) governing oceanic flows. (NB)tΔψ+ψ.Δψ+βxψ=1H(×τ)vμΔψ+ɛΔ2ψ,where ψ(x,y,t) and τ are the streamfunction and the wind stress tensor, respectively. This equation encodes the western boundary layer problem (Ghil et al. 2008) for the potential vorticity ψ, which corresponds to the sharp contrast between the gyres flow in the oceanic circulation at mid-latitude and the strong western boundary currents. Numerical results for Equation (MK-1D) show that, with this two-scale scheme, high order accuracy is preserved for u and (ddx)u both in the boundary layer and in the central zone of the domain. The test cases are taken from Chekroun et al. 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信