Rozansky-Witten理论中的泡沫和kz方程

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Sergei Gukov , Babak Haghighat , Nicolai Reshetikhin
{"title":"Rozansky-Witten理论中的泡沫和kz方程","authors":"Sergei Gukov ,&nbsp;Babak Haghighat ,&nbsp;Nicolai Reshetikhin","doi":"10.1016/j.nuclphysb.2025.116856","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a geometric description of foams, which are prevalent in topological quantum field theories (TQFTs) based on quantum algebra, and reciprocally explore the geometry of Rozansky-Witten (RW) theory from an algebraic perspective. This approach illuminates various aspects of decorated TQFTs via geometry of the target space <em>X</em> of RW theory. Through the formulation of the Knizhnik-Zamolodchikov (KZ) equation within this geometric framework, we derive the corresponding braiding and associator morphisms. We discuss applications where the target space of RW theory emerges as the Coulomb branch of a compactified 6d SCFT or Little String Theory, with the latter being particularly intriguing as it results in a compact <em>X</em>.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1014 ","pages":"Article 116856"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foams and KZ-equations in Rozansky-Witten theories\",\"authors\":\"Sergei Gukov ,&nbsp;Babak Haghighat ,&nbsp;Nicolai Reshetikhin\",\"doi\":\"10.1016/j.nuclphysb.2025.116856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present a geometric description of foams, which are prevalent in topological quantum field theories (TQFTs) based on quantum algebra, and reciprocally explore the geometry of Rozansky-Witten (RW) theory from an algebraic perspective. This approach illuminates various aspects of decorated TQFTs via geometry of the target space <em>X</em> of RW theory. Through the formulation of the Knizhnik-Zamolodchikov (KZ) equation within this geometric framework, we derive the corresponding braiding and associator morphisms. We discuss applications where the target space of RW theory emerges as the Coulomb branch of a compactified 6d SCFT or Little String Theory, with the latter being particularly intriguing as it results in a compact <em>X</em>.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1014 \",\"pages\":\"Article 116856\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321325000653\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325000653","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了基于量子代数的拓扑量子场论(TQFTs)中普遍存在的泡沫的几何描述,并从代数的角度对Rozansky-Witten (RW)理论的几何进行了探讨。这种方法通过RW理论的目标空间X的几何来阐明装饰tqft的各个方面。通过在该几何框架内的Knizhnik-Zamolodchikov (KZ)方程的表述,我们推导出相应的编织态射和关联态射。我们讨论RW理论的目标空间作为紧化6d SCFT或小弦理论的库仑分支出现的应用,后者特别有趣,因为它导致紧化X。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Foams and KZ-equations in Rozansky-Witten theories
In this paper, we present a geometric description of foams, which are prevalent in topological quantum field theories (TQFTs) based on quantum algebra, and reciprocally explore the geometry of Rozansky-Witten (RW) theory from an algebraic perspective. This approach illuminates various aspects of decorated TQFTs via geometry of the target space X of RW theory. Through the formulation of the Knizhnik-Zamolodchikov (KZ) equation within this geometric framework, we derive the corresponding braiding and associator morphisms. We discuss applications where the target space of RW theory emerges as the Coulomb branch of a compactified 6d SCFT or Little String Theory, with the latter being particularly intriguing as it results in a compact X.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信