利用耦合谐振器的光子晶体生物传感器对折射率及其变化进行高灵敏度同时测量

IF 4.4 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mahdi Sovizi, Maryam Aliannezhadi
{"title":"利用耦合谐振器的光子晶体生物传感器对折射率及其变化进行高灵敏度同时测量","authors":"Mahdi Sovizi,&nbsp;Maryam Aliannezhadi","doi":"10.1016/j.rinp.2025.108179","DOIUrl":null,"url":null,"abstract":"<div><div>The paper proposes a novel optical sensor based on one-dimensional binary (SiO2/Si) photonic crystals (PC) with two defect layers to measure the refractive index of the sensing analyte directly and in real-time. Two coupled modes are observed in the bandgap of the PC which is affected by the defect layer separation and the difference between the refractive index of analyte and reference materials. The sensitivities of the coupled modes increase as the two defect layers get closer and the threshold distance of dual defect layers for using the advantage of coupled modes is determined in the paper. The sensitivities and Q factors of these two coupled modes are different in most conditions which highlights the potential of utilizing one of the coupled modes with higher sensitivity for sensing applications of the specific material. Furthermore, accurate and real-time measurements of the analyte refractive index are possible with these coupled modes. This capability enhances the performance of optical sensors based on photonic crystals, allowing for precise measurements in various environments. The proposed optical sensor demonstrates promising features for industrial, diagnostic, and medical applications due to its simplicity in production and capability for multiple simultaneous analyte measurements on a single chip.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"70 ","pages":"Article 108179"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive simultaneous measurement of refractive index and its changes using a photonic crystal biosensor with coupled resonators\",\"authors\":\"Mahdi Sovizi,&nbsp;Maryam Aliannezhadi\",\"doi\":\"10.1016/j.rinp.2025.108179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper proposes a novel optical sensor based on one-dimensional binary (SiO2/Si) photonic crystals (PC) with two defect layers to measure the refractive index of the sensing analyte directly and in real-time. Two coupled modes are observed in the bandgap of the PC which is affected by the defect layer separation and the difference between the refractive index of analyte and reference materials. The sensitivities of the coupled modes increase as the two defect layers get closer and the threshold distance of dual defect layers for using the advantage of coupled modes is determined in the paper. The sensitivities and Q factors of these two coupled modes are different in most conditions which highlights the potential of utilizing one of the coupled modes with higher sensitivity for sensing applications of the specific material. Furthermore, accurate and real-time measurements of the analyte refractive index are possible with these coupled modes. This capability enhances the performance of optical sensors based on photonic crystals, allowing for precise measurements in various environments. The proposed optical sensor demonstrates promising features for industrial, diagnostic, and medical applications due to its simplicity in production and capability for multiple simultaneous analyte measurements on a single chip.</div></div>\",\"PeriodicalId\":21042,\"journal\":{\"name\":\"Results in Physics\",\"volume\":\"70 \",\"pages\":\"Article 108179\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211379725000737\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725000737","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于具有两缺陷层的一维二元(SiO2/Si)光子晶体(PC)的新型光学传感器,可直接实时测量被测物的折射率。在PC的带隙中观察到两种耦合模式,这两种耦合模式受缺陷层分离和分析物与参比物折射率差的影响。耦合模的灵敏度随两缺陷层的距离越近而增加,并确定了利用耦合模优势的双缺陷层的阈值距离。这两种耦合模式的灵敏度和Q因子在大多数情况下是不同的,这突出了利用一种具有较高灵敏度的耦合模式用于特定材料的传感应用的潜力。此外,利用这些耦合模式可以精确和实时地测量分析物的折射率。这种能力增强了基于光子晶体的光学传感器的性能,允许在各种环境中进行精确测量。由于其生产简单,并且能够在单个芯片上同时进行多个分析物测量,因此所提出的光学传感器在工业,诊断和医疗应用中具有很好的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly sensitive simultaneous measurement of refractive index and its changes using a photonic crystal biosensor with coupled resonators
The paper proposes a novel optical sensor based on one-dimensional binary (SiO2/Si) photonic crystals (PC) with two defect layers to measure the refractive index of the sensing analyte directly and in real-time. Two coupled modes are observed in the bandgap of the PC which is affected by the defect layer separation and the difference between the refractive index of analyte and reference materials. The sensitivities of the coupled modes increase as the two defect layers get closer and the threshold distance of dual defect layers for using the advantage of coupled modes is determined in the paper. The sensitivities and Q factors of these two coupled modes are different in most conditions which highlights the potential of utilizing one of the coupled modes with higher sensitivity for sensing applications of the specific material. Furthermore, accurate and real-time measurements of the analyte refractive index are possible with these coupled modes. This capability enhances the performance of optical sensors based on photonic crystals, allowing for precise measurements in various environments. The proposed optical sensor demonstrates promising features for industrial, diagnostic, and medical applications due to its simplicity in production and capability for multiple simultaneous analyte measurements on a single chip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Physics
Results in Physics MATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍: Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics. Results in Physics welcomes three types of papers: 1. Full research papers 2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as: - Data and/or a plot plus a description - Description of a new method or instrumentation - Negative results - Concept or design study 3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信