大范围注入速度和润湿性条件下的孔隙尺度相对渗透率和饱和度分析

IF 4 2区 环境科学与生态学 Q1 WATER RESOURCES
Muhammad Nasir, Shintaro Matsushita, Kailin Wang, Masayuki Osada, Shu Yamashita, Wilson Susanto, Sotheavuth Sin, Tetsuya Suekane
{"title":"大范围注入速度和润湿性条件下的孔隙尺度相对渗透率和饱和度分析","authors":"Muhammad Nasir,&nbsp;Shintaro Matsushita,&nbsp;Kailin Wang,&nbsp;Masayuki Osada,&nbsp;Shu Yamashita,&nbsp;Wilson Susanto,&nbsp;Sotheavuth Sin,&nbsp;Tetsuya Suekane","doi":"10.1016/j.advwatres.2025.104938","DOIUrl":null,"url":null,"abstract":"<div><div>We performed two-dimensional (2D) pore-scale simulations of primary CO<sub>2</sub> injection using a weakly compressible scheme for geological carbon sequestration (GCS) applications. The aim was to analyze pore-scale relative permeability and saturation of CO<sub>2</sub> under wide-ranging injection velocities and wettabilities. The results show that saturation is highest for viscous fingering, lowest for crossover (− 5.82 &lt; <em>logCa</em>  &lt;   − 4.86; θ &lt; 60°), and remains high in the capillary fingering regime even though the relative permeability of CO<sub>2</sub> is minimum. This trend occurs because saturation is influenced not only by the value of relative permeability but also by the frequency of relative permeability fluctuations. At a low injection velocity and contact angle, frequent permeability fluctuations due to Haines jumps result in high saturation despite the low relative permeability. At intermediate injection velocity and low contact angle, both the relative permeability and its fluctuations are moderate, leading to lower CO<sub>2</sub> saturation. The present work bridges the understanding of displacement-front advancement at the pore-network scale with relative permeability, which links the pore-scale meniscus dynamics with the large-scale Darcy-flow parameters. As the CO<sub>2</sub> flows away from the injection site in large-scale GCS applications, the displacement pattern exhibits crossover regime, resulting in minimal displacement efficiency. In a strongly wetting porous medium, this condition is severe because crossover regime spans a wide range of capillary numbers.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"199 ","pages":"Article 104938"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pore-scale relative permeability and saturation analysis under wide-ranging injection velocity and wettability during primary CO2 injection for geological carbon sequestration\",\"authors\":\"Muhammad Nasir,&nbsp;Shintaro Matsushita,&nbsp;Kailin Wang,&nbsp;Masayuki Osada,&nbsp;Shu Yamashita,&nbsp;Wilson Susanto,&nbsp;Sotheavuth Sin,&nbsp;Tetsuya Suekane\",\"doi\":\"10.1016/j.advwatres.2025.104938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We performed two-dimensional (2D) pore-scale simulations of primary CO<sub>2</sub> injection using a weakly compressible scheme for geological carbon sequestration (GCS) applications. The aim was to analyze pore-scale relative permeability and saturation of CO<sub>2</sub> under wide-ranging injection velocities and wettabilities. The results show that saturation is highest for viscous fingering, lowest for crossover (− 5.82 &lt; <em>logCa</em>  &lt;   − 4.86; θ &lt; 60°), and remains high in the capillary fingering regime even though the relative permeability of CO<sub>2</sub> is minimum. This trend occurs because saturation is influenced not only by the value of relative permeability but also by the frequency of relative permeability fluctuations. At a low injection velocity and contact angle, frequent permeability fluctuations due to Haines jumps result in high saturation despite the low relative permeability. At intermediate injection velocity and low contact angle, both the relative permeability and its fluctuations are moderate, leading to lower CO<sub>2</sub> saturation. The present work bridges the understanding of displacement-front advancement at the pore-network scale with relative permeability, which links the pore-scale meniscus dynamics with the large-scale Darcy-flow parameters. As the CO<sub>2</sub> flows away from the injection site in large-scale GCS applications, the displacement pattern exhibits crossover regime, resulting in minimal displacement efficiency. In a strongly wetting porous medium, this condition is severe because crossover regime spans a wide range of capillary numbers.</div></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"199 \",\"pages\":\"Article 104938\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170825000521\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170825000521","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

我们使用弱可压缩方案进行了一次CO2注入的二维(2D)孔隙尺度模拟,用于地质碳封存(GCS)应用。目的是分析不同注入速度和润湿性下孔隙尺度的相对渗透率和二氧化碳饱和度。结果表明,粘性指法的饱和度最高,交叉指法的饱和度最低(- 5.82 <;logCa & lt;−4.86;θ& lt;60°),即使CO2的相对渗透率最小,在毛细管指进状态下仍保持较高。出现这种趋势是因为饱和度不仅受相对渗透率值的影响,而且受相对渗透率波动频率的影响。在低注入速度和低接触角条件下,由于海恩斯跳变引起的频繁渗透率波动导致相对渗透率低,但饱和度高。在中等注入速度和低接触角条件下,相对渗透率及其波动幅度适中,导致CO2饱和度较低。本研究将孔隙网络尺度的驱替前沿推进与相对渗透率联系起来,将孔隙尺度的半月板动力学与大尺度的达西流参数联系起来。在大规模GCS应用中,当CO2从注入部位流出时,驱替模式呈现交叉模式,导致驱替效率最低。在强润湿多孔介质中,这种情况很严重,因为交叉状态跨越了很宽的毛细数范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pore-scale relative permeability and saturation analysis under wide-ranging injection velocity and wettability during primary CO2 injection for geological carbon sequestration
We performed two-dimensional (2D) pore-scale simulations of primary CO2 injection using a weakly compressible scheme for geological carbon sequestration (GCS) applications. The aim was to analyze pore-scale relative permeability and saturation of CO2 under wide-ranging injection velocities and wettabilities. The results show that saturation is highest for viscous fingering, lowest for crossover (− 5.82 < logCa  <   − 4.86; θ < 60°), and remains high in the capillary fingering regime even though the relative permeability of CO2 is minimum. This trend occurs because saturation is influenced not only by the value of relative permeability but also by the frequency of relative permeability fluctuations. At a low injection velocity and contact angle, frequent permeability fluctuations due to Haines jumps result in high saturation despite the low relative permeability. At intermediate injection velocity and low contact angle, both the relative permeability and its fluctuations are moderate, leading to lower CO2 saturation. The present work bridges the understanding of displacement-front advancement at the pore-network scale with relative permeability, which links the pore-scale meniscus dynamics with the large-scale Darcy-flow parameters. As the CO2 flows away from the injection site in large-scale GCS applications, the displacement pattern exhibits crossover regime, resulting in minimal displacement efficiency. In a strongly wetting porous medium, this condition is severe because crossover regime spans a wide range of capillary numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Water Resources
Advances in Water Resources 环境科学-水资源
CiteScore
9.40
自引率
6.40%
发文量
171
审稿时长
36 days
期刊介绍: Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources. Examples of appropriate topical areas that will be considered include the following: • Surface and subsurface hydrology • Hydrometeorology • Environmental fluid dynamics • Ecohydrology and ecohydrodynamics • Multiphase transport phenomena in porous media • Fluid flow and species transport and reaction processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信