完全二部偏集的诱导饱和

IF 0.7 3区 数学 Q2 MATHEMATICS
Dingyuan Liu
{"title":"完全二部偏集的诱导饱和","authors":"Dingyuan Liu","doi":"10.1016/j.disc.2025.114462","DOIUrl":null,"url":null,"abstract":"<div><div>Given <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></math></span>, a complete bipartite poset <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> is a poset whose Hasse diagram consists of <em>s</em> pairwise incomparable vertices in the upper layer and <em>t</em> pairwise incomparable vertices in the lower layer, such that every vertex in the upper layer is larger than all vertices in the lower layer. A family <span><math><mi>F</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span> is called induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>-saturated if <span><math><mo>(</mo><mi>F</mi><mo>,</mo><mo>⊆</mo><mo>)</mo></math></span> contains no induced copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, whereas adding any set from <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup><mo>﹨</mo><mi>F</mi></math></span> to <span><math><mi>F</mi></math></span> creates an induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>. Let <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> denote the smallest size of an induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>-saturated family <span><math><mi>F</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span>. It was conjectured that <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> is superlinear in <em>n</em> for certain values of <em>s</em> and <em>t</em>. In this paper, we show that <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all fixed <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></math></span>. Moreover, we prove a linear lower bound on <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> for a large class of posets <span><math><mi>P</mi></math></span>, particularly for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> with <span><math><mi>s</mi><mo>∈</mo><mi>N</mi></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114462"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induced saturation for complete bipartite posets\",\"authors\":\"Dingyuan Liu\",\"doi\":\"10.1016/j.disc.2025.114462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></math></span>, a complete bipartite poset <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> is a poset whose Hasse diagram consists of <em>s</em> pairwise incomparable vertices in the upper layer and <em>t</em> pairwise incomparable vertices in the lower layer, such that every vertex in the upper layer is larger than all vertices in the lower layer. A family <span><math><mi>F</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span> is called induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>-saturated if <span><math><mo>(</mo><mi>F</mi><mo>,</mo><mo>⊆</mo><mo>)</mo></math></span> contains no induced copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, whereas adding any set from <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup><mo>﹨</mo><mi>F</mi></math></span> to <span><math><mi>F</mi></math></span> creates an induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>. Let <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> denote the smallest size of an induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>-saturated family <span><math><mi>F</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span>. It was conjectured that <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> is superlinear in <em>n</em> for certain values of <em>s</em> and <em>t</em>. In this paper, we show that <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all fixed <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></math></span>. Moreover, we prove a linear lower bound on <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> for a large class of posets <span><math><mi>P</mi></math></span>, particularly for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> with <span><math><mi>s</mi><mo>∈</mo><mi>N</mi></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 7\",\"pages\":\"Article 114462\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25000706\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000706","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定s,t∈N,一个完全二部偏序集Ks,t是这样一个偏序集,其Hasse图由上层的s个对不可比较顶点和下层的t个对不可比较顶点组成,使得上层的每一个顶点都大于下层的所有顶点。如果(F,)不包含k,t的诱导副本,则称为诱导k,t饱和,而将2[n]\F的任何集合添加到F中,则形成一个诱导k,t。让坐⁎(n, k, t)表示的最小大小诱导Ks, t-saturated家庭F⊆2 [n]。我们推测,对于s和t的某些值,sat (n,Ks,t)在n上是超线性的。本文证明了对于所有固定的s,t∈n, sat (n,Ks,t)=O(n)。此外,我们证明了一大类偏序集P的线性下界(n,P),特别是对于s∈n的k,2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Induced saturation for complete bipartite posets
Given s,tN, a complete bipartite poset Ks,t is a poset whose Hasse diagram consists of s pairwise incomparable vertices in the upper layer and t pairwise incomparable vertices in the lower layer, such that every vertex in the upper layer is larger than all vertices in the lower layer. A family F2[n] is called induced Ks,t-saturated if (F,) contains no induced copy of Ks,t, whereas adding any set from 2[n]F to F creates an induced Ks,t. Let sat(n,Ks,t) denote the smallest size of an induced Ks,t-saturated family F2[n]. It was conjectured that sat(n,Ks,t) is superlinear in n for certain values of s and t. In this paper, we show that sat(n,Ks,t)=O(n) for all fixed s,tN. Moreover, we prove a linear lower bound on sat(n,P) for a large class of posets P, particularly for Ks,2 with sN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信