{"title":"完全二部偏集的诱导饱和","authors":"Dingyuan Liu","doi":"10.1016/j.disc.2025.114462","DOIUrl":null,"url":null,"abstract":"<div><div>Given <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></math></span>, a complete bipartite poset <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> is a poset whose Hasse diagram consists of <em>s</em> pairwise incomparable vertices in the upper layer and <em>t</em> pairwise incomparable vertices in the lower layer, such that every vertex in the upper layer is larger than all vertices in the lower layer. A family <span><math><mi>F</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span> is called induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>-saturated if <span><math><mo>(</mo><mi>F</mi><mo>,</mo><mo>⊆</mo><mo>)</mo></math></span> contains no induced copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, whereas adding any set from <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup><mo>﹨</mo><mi>F</mi></math></span> to <span><math><mi>F</mi></math></span> creates an induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>. Let <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> denote the smallest size of an induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>-saturated family <span><math><mi>F</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span>. It was conjectured that <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> is superlinear in <em>n</em> for certain values of <em>s</em> and <em>t</em>. In this paper, we show that <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all fixed <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></math></span>. Moreover, we prove a linear lower bound on <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> for a large class of posets <span><math><mi>P</mi></math></span>, particularly for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> with <span><math><mi>s</mi><mo>∈</mo><mi>N</mi></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114462"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induced saturation for complete bipartite posets\",\"authors\":\"Dingyuan Liu\",\"doi\":\"10.1016/j.disc.2025.114462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></math></span>, a complete bipartite poset <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> is a poset whose Hasse diagram consists of <em>s</em> pairwise incomparable vertices in the upper layer and <em>t</em> pairwise incomparable vertices in the lower layer, such that every vertex in the upper layer is larger than all vertices in the lower layer. A family <span><math><mi>F</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span> is called induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>-saturated if <span><math><mo>(</mo><mi>F</mi><mo>,</mo><mo>⊆</mo><mo>)</mo></math></span> contains no induced copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, whereas adding any set from <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup><mo>﹨</mo><mi>F</mi></math></span> to <span><math><mi>F</mi></math></span> creates an induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>. Let <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> denote the smallest size of an induced <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>-saturated family <span><math><mi>F</mi><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span>. It was conjectured that <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> is superlinear in <em>n</em> for certain values of <em>s</em> and <em>t</em>. In this paper, we show that <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all fixed <span><math><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>N</mi></math></span>. Moreover, we prove a linear lower bound on <span><math><msup><mrow><mi>sat</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>n</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> for a large class of posets <span><math><mi>P</mi></math></span>, particularly for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> with <span><math><mi>s</mi><mo>∈</mo><mi>N</mi></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 7\",\"pages\":\"Article 114462\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25000706\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000706","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给定s,t∈N,一个完全二部偏序集Ks,t是这样一个偏序集,其Hasse图由上层的s个对不可比较顶点和下层的t个对不可比较顶点组成,使得上层的每一个顶点都大于下层的所有顶点。如果(F,)不包含k,t的诱导副本,则称为诱导k,t饱和,而将2[n]\F的任何集合添加到F中,则形成一个诱导k,t。让坐⁎(n, k, t)表示的最小大小诱导Ks, t-saturated家庭F⊆2 [n]。我们推测,对于s和t的某些值,sat (n,Ks,t)在n上是超线性的。本文证明了对于所有固定的s,t∈n, sat (n,Ks,t)=O(n)。此外,我们证明了一大类偏序集P的线性下界(n,P),特别是对于s∈n的k,2。
Given , a complete bipartite poset is a poset whose Hasse diagram consists of s pairwise incomparable vertices in the upper layer and t pairwise incomparable vertices in the lower layer, such that every vertex in the upper layer is larger than all vertices in the lower layer. A family is called induced -saturated if contains no induced copy of , whereas adding any set from to creates an induced . Let denote the smallest size of an induced -saturated family . It was conjectured that is superlinear in n for certain values of s and t. In this paper, we show that for all fixed . Moreover, we prove a linear lower bound on for a large class of posets , particularly for with .
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.