(2+1)维可积非局部非线性Schrödinger方程的n周期波解

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Zhonglong Zhao, Yu Wang
{"title":"(2+1)维可积非局部非线性Schrödinger方程的n周期波解","authors":"Zhonglong Zhao,&nbsp;Yu Wang","doi":"10.1016/j.wavemoti.2025.103526","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the quasi-periodic wave solutions for the (2+1)-dimensional integrable nonlocal nonlinear Schrödinger equations based on parity-time <span><math><mrow><mo>(</mo><mi>P</mi><mi>T</mi><mo>)</mo></mrow></math></span> symmetry are investigated through numerical algorithm for the first time. By using the Hirota’s bilinear method and the Riemann-theta function, the system of equations for constructing quasi-periodic wave solutions can be viewed as a nonlinear over-determined system. This system can be transformed into a nonlinear least square problem and solved with the aid of the Gauss–Newton algorithm. The asymptotic property of the one-periodic wave under the small amplitude limit is investigated. Furthermore, the dynamical behaviors of the quasi-periodic waves are analyzed by means of the characteristic lines. The method for constructing the quasi-periodic wave solutions can be further extended into other nonlocal integrable equations.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"136 ","pages":"Article 103526"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-periodic wave solutions of the (2+1)-dimensional integrable nonlocal nonlinear Schrödinger equations\",\"authors\":\"Zhonglong Zhao,&nbsp;Yu Wang\",\"doi\":\"10.1016/j.wavemoti.2025.103526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the quasi-periodic wave solutions for the (2+1)-dimensional integrable nonlocal nonlinear Schrödinger equations based on parity-time <span><math><mrow><mo>(</mo><mi>P</mi><mi>T</mi><mo>)</mo></mrow></math></span> symmetry are investigated through numerical algorithm for the first time. By using the Hirota’s bilinear method and the Riemann-theta function, the system of equations for constructing quasi-periodic wave solutions can be viewed as a nonlinear over-determined system. This system can be transformed into a nonlinear least square problem and solved with the aid of the Gauss–Newton algorithm. The asymptotic property of the one-periodic wave under the small amplitude limit is investigated. Furthermore, the dynamical behaviors of the quasi-periodic waves are analyzed by means of the characteristic lines. The method for constructing the quasi-periodic wave solutions can be further extended into other nonlocal integrable equations.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"136 \",\"pages\":\"Article 103526\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016521252500037X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016521252500037X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文首次利用数值算法研究了基于宇称-时间对称的(2+1)维可积非局部非线性Schrödinger方程的拟周期波解。利用Hirota的双线性方法和Riemann-theta函数,构造拟周期波解的方程组可以看作是一个非线性过定系统。该系统可转化为非线性最小二乘问题,利用高斯-牛顿算法求解。研究了小振幅极限下单周期波的渐近性质。此外,利用特征线分析了准周期波的动力学行为。构造拟周期波解的方法可进一步推广到其他非局部可积方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
N-periodic wave solutions of the (2+1)-dimensional integrable nonlocal nonlinear Schrödinger equations
In this paper, the quasi-periodic wave solutions for the (2+1)-dimensional integrable nonlocal nonlinear Schrödinger equations based on parity-time (PT) symmetry are investigated through numerical algorithm for the first time. By using the Hirota’s bilinear method and the Riemann-theta function, the system of equations for constructing quasi-periodic wave solutions can be viewed as a nonlinear over-determined system. This system can be transformed into a nonlinear least square problem and solved with the aid of the Gauss–Newton algorithm. The asymptotic property of the one-periodic wave under the small amplitude limit is investigated. Furthermore, the dynamical behaviors of the quasi-periodic waves are analyzed by means of the characteristic lines. The method for constructing the quasi-periodic wave solutions can be further extended into other nonlocal integrable equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信