复宇称对称的非局部矩阵Hirota方程:可积性、Darboux变换和精确解

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Tong Zhou
{"title":"复宇称对称的非局部矩阵Hirota方程:可积性、Darboux变换和精确解","authors":"Tong Zhou","doi":"10.1016/j.wavemoti.2025.103531","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a nonlocal matrix Hirota equation with complex parity symmetry and its corresponding Lax pair are introduced from AKNS-type spectral problem with matrix potential functions, and the integrability in the sense of infinitely many conservation laws is confirmed. For this nonlocal matrix integrable equation, the author constructs the Darboux transformation of related spectral problem, studies several types of matrix exact solutions by taking different groups of seed solutions and spectral parameters, and investigates the dynamical properties of these exact solutions.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"136 ","pages":"Article 103531"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the nonlocal matrix Hirota equation with complex parity symmetry: Integrability, Darboux transformation and exact solutions\",\"authors\":\"Tong Zhou\",\"doi\":\"10.1016/j.wavemoti.2025.103531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a nonlocal matrix Hirota equation with complex parity symmetry and its corresponding Lax pair are introduced from AKNS-type spectral problem with matrix potential functions, and the integrability in the sense of infinitely many conservation laws is confirmed. For this nonlocal matrix integrable equation, the author constructs the Darboux transformation of related spectral problem, studies several types of matrix exact solutions by taking different groups of seed solutions and spectral parameters, and investigates the dynamical properties of these exact solutions.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"136 \",\"pages\":\"Article 103531\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212525000423\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525000423","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文从具有矩阵势函数的akns型谱问题中引入了复宇称对称的非局部矩阵Hirota方程及其对应的Lax对,并在无穷多守恒律意义下证实了其可积性。对于该非局部矩阵可积方程,构造了相关谱问题的Darboux变换,研究了采用不同种子解组和谱参数的几种矩阵精确解,并研究了这些精确解的动力学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the nonlocal matrix Hirota equation with complex parity symmetry: Integrability, Darboux transformation and exact solutions
In this work, a nonlocal matrix Hirota equation with complex parity symmetry and its corresponding Lax pair are introduced from AKNS-type spectral problem with matrix potential functions, and the integrability in the sense of infinitely many conservation laws is confirmed. For this nonlocal matrix integrable equation, the author constructs the Darboux transformation of related spectral problem, studies several types of matrix exact solutions by taking different groups of seed solutions and spectral parameters, and investigates the dynamical properties of these exact solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信