对空气中浮力驱动湍流的Oberbeck-Boussinesq近似的评估

IF 5.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
A. Cimarelli , A. Fenzi , D. Angeli , E. Stalio
{"title":"对空气中浮力驱动湍流的Oberbeck-Boussinesq近似的评估","authors":"A. Cimarelli ,&nbsp;A. Fenzi ,&nbsp;D. Angeli ,&nbsp;E. Stalio","doi":"10.1016/j.ijheatmasstransfer.2025.126851","DOIUrl":null,"url":null,"abstract":"<div><div>The full mathematical representation of natural convection is very complex, as it involves, besides continuity and the equations for the transport of momentum and energy, one state equation for density and three laws for the dependency of the thermophysical parameters on pressure and temperature. In addition it requires the representation of pressure work and viscous dissipation in the energy equation. Most numerical simulations and theoretical studies of natural convection use a simplified model based on the Oberbeck–Boussinesq approximation. With respect to the general formulation, the simplified problem is characterized by a divergence-free velocity field, uses constant thermophysical parameters and neglects viscous dissipation and pressure work. Although the Oberbeck–Boussinesq equations have become a physical case in themselves, in certain flow conditions non-Oberbeck–Boussinesq phenomena are non-negligible thus significantly affecting the flow solution. The aim of the present work is to quantitatively identify the flow conditions that give rise to non-negligible non-Oberbeck–Boussinesq phenomena. We demonstrate that the use of direct numerical simulation data combined with the theoretical framework provided by Gray and Giorgini (1976) represents a sound practice to address this issue. The test-case selected is the Rayleigh–Bénard problem at Ra<span><math><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> with air as working fluid. Direct numerical simulations carried out using the compressible, variable property formulation and the Oberbeck–Boussinesq approximation highlight that a 5% tolerance on variations of the thermophysical properties of air around the reference state <span><math><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>Θ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>P</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></math></span> = (30 °C, 1 atm) only marginally affects the statistical values of both global and local quantities. However, this tolerance represents a very stringent condition that for a tank of height <span><math><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>=</mo><mn>2</mn></mrow></math></span> m filled with air at a reference state <span><math><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>Θ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>P</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></math></span> = (30 °C, 1 atm) leads to a rather low maximum Rayleigh number of the order of <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>10</mn></mrow></msup></mrow></math></span> that can be investigated without considering the influence of non-Oberbeck–Boussinesq effects. Hence, some doubts about the use of the Oberbeck–Boussinesq approximation for the study of high Rayleigh numbers are envisaged at least for air as working fluid.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"243 ","pages":"Article 126851"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the Oberbeck–Boussinesq approximation for buoyancy-driven turbulence in air\",\"authors\":\"A. Cimarelli ,&nbsp;A. Fenzi ,&nbsp;D. Angeli ,&nbsp;E. Stalio\",\"doi\":\"10.1016/j.ijheatmasstransfer.2025.126851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The full mathematical representation of natural convection is very complex, as it involves, besides continuity and the equations for the transport of momentum and energy, one state equation for density and three laws for the dependency of the thermophysical parameters on pressure and temperature. In addition it requires the representation of pressure work and viscous dissipation in the energy equation. Most numerical simulations and theoretical studies of natural convection use a simplified model based on the Oberbeck–Boussinesq approximation. With respect to the general formulation, the simplified problem is characterized by a divergence-free velocity field, uses constant thermophysical parameters and neglects viscous dissipation and pressure work. Although the Oberbeck–Boussinesq equations have become a physical case in themselves, in certain flow conditions non-Oberbeck–Boussinesq phenomena are non-negligible thus significantly affecting the flow solution. The aim of the present work is to quantitatively identify the flow conditions that give rise to non-negligible non-Oberbeck–Boussinesq phenomena. We demonstrate that the use of direct numerical simulation data combined with the theoretical framework provided by Gray and Giorgini (1976) represents a sound practice to address this issue. The test-case selected is the Rayleigh–Bénard problem at Ra<span><math><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> with air as working fluid. Direct numerical simulations carried out using the compressible, variable property formulation and the Oberbeck–Boussinesq approximation highlight that a 5% tolerance on variations of the thermophysical properties of air around the reference state <span><math><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>Θ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>P</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></math></span> = (30 °C, 1 atm) only marginally affects the statistical values of both global and local quantities. However, this tolerance represents a very stringent condition that for a tank of height <span><math><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>=</mo><mn>2</mn></mrow></math></span> m filled with air at a reference state <span><math><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>Θ</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>P</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></math></span> = (30 °C, 1 atm) leads to a rather low maximum Rayleigh number of the order of <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>10</mn></mrow></msup></mrow></math></span> that can be investigated without considering the influence of non-Oberbeck–Boussinesq effects. Hence, some doubts about the use of the Oberbeck–Boussinesq approximation for the study of high Rayleigh numbers are envisaged at least for air as working fluid.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"243 \",\"pages\":\"Article 126851\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931025001929\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025001929","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

自然对流的完整数学表示是非常复杂的,因为它除了涉及连续性和动量和能量输运方程之外,还涉及密度的一态方程和热物理参数对压力和温度的依赖性的三个定律。此外,它要求在能量方程中表示压力功和粘性耗散。大多数自然对流的数值模拟和理论研究使用基于Oberbeck-Boussinesq近似的简化模型。与一般公式相比,简化问题的特点是无散度速度场,使用恒定的热物性参数,忽略粘性耗散和压力功。虽然Oberbeck-Boussinesq方程本身已经成为一个物理情况,但在某些流动条件下,非Oberbeck-Boussinesq现象是不可忽略的,从而显著影响流动解。本工作的目的是定量地确定产生不可忽略的非奥伯贝克-布辛尼斯克现象的流动条件。我们证明,直接数值模拟数据与Gray和Giorgini(1976)提供的理论框架相结合的使用代表了解决这一问题的良好实践。所选择的测试用例是Ra=0.7×106处以空气为工作流体的rayleigh - bsamadard问题。使用可压缩、可变性质公式和Oberbeck-Boussinesq近似进行的直接数值模拟突出表明,参考状态(Θ±0,P±0)=(30°C, 1 atm)周围空气热物理性质变化的5%容差仅对全局和局部量的统计值产生轻微影响。然而,这个公差代表了一个非常严格的条件,对于高度H =2米的储罐,在参考状态(Θ,P, 0) =(30°C, 1 atm)下充满空气,导致相当低的1010数量级的最大瑞利数,可以在不考虑非oberbaker - boussinesq效应的影响的情况下进行研究。因此,至少在空气作为工作流体的情况下,对使用奥伯贝克-布辛尼斯克近似来研究高瑞利数有一些疑问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of the Oberbeck–Boussinesq approximation for buoyancy-driven turbulence in air
The full mathematical representation of natural convection is very complex, as it involves, besides continuity and the equations for the transport of momentum and energy, one state equation for density and three laws for the dependency of the thermophysical parameters on pressure and temperature. In addition it requires the representation of pressure work and viscous dissipation in the energy equation. Most numerical simulations and theoretical studies of natural convection use a simplified model based on the Oberbeck–Boussinesq approximation. With respect to the general formulation, the simplified problem is characterized by a divergence-free velocity field, uses constant thermophysical parameters and neglects viscous dissipation and pressure work. Although the Oberbeck–Boussinesq equations have become a physical case in themselves, in certain flow conditions non-Oberbeck–Boussinesq phenomena are non-negligible thus significantly affecting the flow solution. The aim of the present work is to quantitatively identify the flow conditions that give rise to non-negligible non-Oberbeck–Boussinesq phenomena. We demonstrate that the use of direct numerical simulation data combined with the theoretical framework provided by Gray and Giorgini (1976) represents a sound practice to address this issue. The test-case selected is the Rayleigh–Bénard problem at Ra=0.7×106 with air as working fluid. Direct numerical simulations carried out using the compressible, variable property formulation and the Oberbeck–Boussinesq approximation highlight that a 5% tolerance on variations of the thermophysical properties of air around the reference state (Θ̃0,P̃0) = (30 °C, 1 atm) only marginally affects the statistical values of both global and local quantities. However, this tolerance represents a very stringent condition that for a tank of height H̃=2 m filled with air at a reference state (Θ̃0,P̃0) = (30 °C, 1 atm) leads to a rather low maximum Rayleigh number of the order of 1010 that can be investigated without considering the influence of non-Oberbeck–Boussinesq effects. Hence, some doubts about the use of the Oberbeck–Boussinesq approximation for the study of high Rayleigh numbers are envisaged at least for air as working fluid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信