Mishel Manashirov , Ran Brauner , Yarden Mor , Guy Raphaeli , Sagi Harnof , Alain Perlow , Eitan Auriel , Michael Findler
{"title":"治疗前3D打印动脉瘤训练:病例对照回顾性研究","authors":"Mishel Manashirov , Ran Brauner , Yarden Mor , Guy Raphaeli , Sagi Harnof , Alain Perlow , Eitan Auriel , Michael Findler","doi":"10.1016/j.stlm.2025.100195","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Intracranial aneurysms are abnormal dilatations of arteries in the brain, often necessitating intricate endovascular interventions. Preoperative planning using 3D-printed models can enhance the understanding of complex aneurysm anatomy and improve treatment strategies. This study aims to evaluate the impact of patient-specific 3D-printed aneurysm models on procedural planning, treatment efficacy, and clinical outcomes.</div></div><div><h3>Methods</h3><div>We conducted a retrospective analysis of patients treated for non-ruptured intracranial aneurysms at our institution between 2021 and 2023. Nine patients underwent preoperative simulation using 3D-printed models, while 32 patients received standard care without simulation. The vascular models were created using 3D Slicer for segmentation and Meshmixer for model refinement. The simulations were performed on a biplane Allura system. Data on demographics, aneurysm characteristics, hospitalization duration, procedure times, treatment changes, and unused materials were collected and analyzed using SPSS software. Statistical significance was assessed with independent one-tail <em>t</em>-tests, with a p-value < 0.05 considered significant.</div></div><div><h3>Results</h3><div>The experimental group (nine patients) showed a trend towards reduced procedure times compared to the control group (126 ± 48 mins vs. 142 ± 68 mins, <em>p</em> = 0.253). There was no significant difference in mean hospitalization days between the groups (4 ± 0.9 days vs. 4 ± 1.7 days, <em>p</em> = 0.502). Interestingly, the treatment strategy was altered in four cases based on 3D simulation insights. The 3D simulation group also experienced fewer procedural complications (22.2 % vs. 31.2 %).</div></div><div><h3>Conclusions</h3><div>simulation using 3D-printed models shows potential in enhancing procedural planning and reducing complication rates in the treatment of intracranial aneurysms. While the study did not demonstrate statistically significant differences in procedure time and hospitalization days, the observed trends and changes in treatment strategies suggest that 3D printing technology can provide valuable insights for neurointerventionists. Further research with larger sample sizes and prospective designs is warranted to validate these findings and establish standardized protocols for integrating 3D printing into clinical practice.</div></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"18 ","pages":"Article 100195"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D printed aneurysm training before treatment: A case control retrospective study\",\"authors\":\"Mishel Manashirov , Ran Brauner , Yarden Mor , Guy Raphaeli , Sagi Harnof , Alain Perlow , Eitan Auriel , Michael Findler\",\"doi\":\"10.1016/j.stlm.2025.100195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Intracranial aneurysms are abnormal dilatations of arteries in the brain, often necessitating intricate endovascular interventions. Preoperative planning using 3D-printed models can enhance the understanding of complex aneurysm anatomy and improve treatment strategies. This study aims to evaluate the impact of patient-specific 3D-printed aneurysm models on procedural planning, treatment efficacy, and clinical outcomes.</div></div><div><h3>Methods</h3><div>We conducted a retrospective analysis of patients treated for non-ruptured intracranial aneurysms at our institution between 2021 and 2023. Nine patients underwent preoperative simulation using 3D-printed models, while 32 patients received standard care without simulation. The vascular models were created using 3D Slicer for segmentation and Meshmixer for model refinement. The simulations were performed on a biplane Allura system. Data on demographics, aneurysm characteristics, hospitalization duration, procedure times, treatment changes, and unused materials were collected and analyzed using SPSS software. Statistical significance was assessed with independent one-tail <em>t</em>-tests, with a p-value < 0.05 considered significant.</div></div><div><h3>Results</h3><div>The experimental group (nine patients) showed a trend towards reduced procedure times compared to the control group (126 ± 48 mins vs. 142 ± 68 mins, <em>p</em> = 0.253). There was no significant difference in mean hospitalization days between the groups (4 ± 0.9 days vs. 4 ± 1.7 days, <em>p</em> = 0.502). Interestingly, the treatment strategy was altered in four cases based on 3D simulation insights. The 3D simulation group also experienced fewer procedural complications (22.2 % vs. 31.2 %).</div></div><div><h3>Conclusions</h3><div>simulation using 3D-printed models shows potential in enhancing procedural planning and reducing complication rates in the treatment of intracranial aneurysms. While the study did not demonstrate statistically significant differences in procedure time and hospitalization days, the observed trends and changes in treatment strategies suggest that 3D printing technology can provide valuable insights for neurointerventionists. Further research with larger sample sizes and prospective designs is warranted to validate these findings and establish standardized protocols for integrating 3D printing into clinical practice.</div></div>\",\"PeriodicalId\":72210,\"journal\":{\"name\":\"Annals of 3D printed medicine\",\"volume\":\"18 \",\"pages\":\"Article 100195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of 3D printed medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666964125000104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964125000104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
背景:颅内动脉瘤是脑部动脉的异常扩张,通常需要复杂的血管内介入治疗。使用3d打印模型进行术前规划可以增强对复杂动脉瘤解剖结构的理解并改进治疗策略。本研究旨在评估患者特异性3d打印动脉瘤模型对手术计划、治疗效果和临床结果的影响。方法回顾性分析我院2021年至2023年收治的未破裂颅内动脉瘤患者。9例患者术前使用3d打印模型进行模拟,32例患者接受标准护理,未进行模拟。血管模型创建使用3D切片器分割和网格混合器模型细化。在双翼Allura系统上进行了仿真。统计数据、动脉瘤特征、住院时间、手术次数、治疗改变和未使用材料等数据收集并使用SPSS软件进行分析。采用独立单尾t检验评估统计学显著性,p值为<;0.05认为显著。结果实验组(9例)手术时间明显少于对照组(126±48 min vs 142±68 min, p = 0.253)。两组患者平均住院天数差异无统计学意义(4±0.9天vs. 4±1.7天,p = 0.502)。有趣的是,根据3D模拟结果,有4例患者的治疗策略发生了改变。3D模拟组也经历了更少的手术并发症(22.2%比31.2%)。结论3d打印模型在颅内动脉瘤治疗中具有提高手术计划和降低并发症发生率的潜力。虽然该研究没有显示手术时间和住院天数的统计学差异,但观察到的治疗策略趋势和变化表明,3D打印技术可以为神经介入医生提供有价值的见解。进一步的研究需要更大的样本量和前瞻性设计来验证这些发现,并建立将3D打印整合到临床实践的标准化协议。
3D printed aneurysm training before treatment: A case control retrospective study
Background
Intracranial aneurysms are abnormal dilatations of arteries in the brain, often necessitating intricate endovascular interventions. Preoperative planning using 3D-printed models can enhance the understanding of complex aneurysm anatomy and improve treatment strategies. This study aims to evaluate the impact of patient-specific 3D-printed aneurysm models on procedural planning, treatment efficacy, and clinical outcomes.
Methods
We conducted a retrospective analysis of patients treated for non-ruptured intracranial aneurysms at our institution between 2021 and 2023. Nine patients underwent preoperative simulation using 3D-printed models, while 32 patients received standard care without simulation. The vascular models were created using 3D Slicer for segmentation and Meshmixer for model refinement. The simulations were performed on a biplane Allura system. Data on demographics, aneurysm characteristics, hospitalization duration, procedure times, treatment changes, and unused materials were collected and analyzed using SPSS software. Statistical significance was assessed with independent one-tail t-tests, with a p-value < 0.05 considered significant.
Results
The experimental group (nine patients) showed a trend towards reduced procedure times compared to the control group (126 ± 48 mins vs. 142 ± 68 mins, p = 0.253). There was no significant difference in mean hospitalization days between the groups (4 ± 0.9 days vs. 4 ± 1.7 days, p = 0.502). Interestingly, the treatment strategy was altered in four cases based on 3D simulation insights. The 3D simulation group also experienced fewer procedural complications (22.2 % vs. 31.2 %).
Conclusions
simulation using 3D-printed models shows potential in enhancing procedural planning and reducing complication rates in the treatment of intracranial aneurysms. While the study did not demonstrate statistically significant differences in procedure time and hospitalization days, the observed trends and changes in treatment strategies suggest that 3D printing technology can provide valuable insights for neurointerventionists. Further research with larger sample sizes and prospective designs is warranted to validate these findings and establish standardized protocols for integrating 3D printing into clinical practice.