深度学习应用中基于数据分离的大数据存储垃圾收集优化

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiang Zhou , Sirui Peng , Taoran Shen , Jie Yin , Tieli Sun , Xiaoyong Xue
{"title":"深度学习应用中基于数据分离的大数据存储垃圾收集优化","authors":"Qiang Zhou ,&nbsp;Sirui Peng ,&nbsp;Taoran Shen ,&nbsp;Jie Yin ,&nbsp;Tieli Sun ,&nbsp;Xiaoyong Xue","doi":"10.1016/j.mejo.2025.106620","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has revolutionized numerous domains, creating an urgent need for storage systems capable of handling massive datasets and the intensive computational demands inherent to these workloads. Solid-State Drives (SSDs), known for their fast random access, low power consumption, and shock resistance, have emerged as a preferred storage medium in this context. However, traditional SSDs face critical challenges, including garbage collection (GC) overhead, write amplification, and inefficiencies in the software storage stack, stemming from the intrinsic characteristics of NAND flash and limitations in the existing storage ecosystem. These challenges underscore the necessity for specialized SSD controller chip designs tailored for deep learning workloads, addressing performance bottlenecks and optimizing data management to meet the unique demands of AI-driven applications. In this work, we implemented an open-channel SSD (OCSSD) based on a Xilinx FPGA, which can effectively alleviate the above-mentioned issues by exposing the structural characteristics of NAND flash to the host. To mitigate the performance cliff of I/O requests during GC operations, the link distance for data transmission is shortened by decoupling the host end and the device end. Moreover, the valid data migration and the GC operation frequency are both dramatically reduced by detecting and separating hot data and cold data to improve the overall performance of the SSD system. To verify the superiority of our design, we build a test platform through hardware and software co-design. The experimental results show that random read and random write bandwidth are increased by 159.7 % and 25.3 % compared to the mainstream SSDs, respectively. The latency of a single GC operation is reduced by an average of 12.64 % and the GC frequency is lowered by up to 64.8 %.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"158 ","pages":"Article 106620"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Garbage collection optimization with data separation for large data storage in deep learning applications\",\"authors\":\"Qiang Zhou ,&nbsp;Sirui Peng ,&nbsp;Taoran Shen ,&nbsp;Jie Yin ,&nbsp;Tieli Sun ,&nbsp;Xiaoyong Xue\",\"doi\":\"10.1016/j.mejo.2025.106620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning has revolutionized numerous domains, creating an urgent need for storage systems capable of handling massive datasets and the intensive computational demands inherent to these workloads. Solid-State Drives (SSDs), known for their fast random access, low power consumption, and shock resistance, have emerged as a preferred storage medium in this context. However, traditional SSDs face critical challenges, including garbage collection (GC) overhead, write amplification, and inefficiencies in the software storage stack, stemming from the intrinsic characteristics of NAND flash and limitations in the existing storage ecosystem. These challenges underscore the necessity for specialized SSD controller chip designs tailored for deep learning workloads, addressing performance bottlenecks and optimizing data management to meet the unique demands of AI-driven applications. In this work, we implemented an open-channel SSD (OCSSD) based on a Xilinx FPGA, which can effectively alleviate the above-mentioned issues by exposing the structural characteristics of NAND flash to the host. To mitigate the performance cliff of I/O requests during GC operations, the link distance for data transmission is shortened by decoupling the host end and the device end. Moreover, the valid data migration and the GC operation frequency are both dramatically reduced by detecting and separating hot data and cold data to improve the overall performance of the SSD system. To verify the superiority of our design, we build a test platform through hardware and software co-design. The experimental results show that random read and random write bandwidth are increased by 159.7 % and 25.3 % compared to the mainstream SSDs, respectively. The latency of a single GC operation is reduced by an average of 12.64 % and the GC frequency is lowered by up to 64.8 %.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"158 \",\"pages\":\"Article 106620\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239125000694\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125000694","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

深度学习已经彻底改变了许多领域,迫切需要能够处理大量数据集的存储系统以及这些工作负载固有的密集计算需求。固态硬盘(ssd)以其快速随机存取、低功耗和抗冲击而闻名,已成为这种情况下的首选存储介质。然而,由于NAND闪存的固有特性和现有存储生态系统的限制,传统ssd面临着严峻的挑战,包括垃圾收集(GC)开销、写放大和软件存储堆栈的低效率。这些挑战强调了为深度学习工作负载量身定制专门的SSD控制器芯片设计的必要性,解决性能瓶颈并优化数据管理,以满足人工智能驱动应用的独特需求。本文基于Xilinx FPGA实现了一种开放通道固态硬盘(OCSSD),通过将NAND闪存的结构特征暴露给主机,可以有效地缓解上述问题。为了缓解GC操作期间I/O请求的性能悬崖,通过将主机端和设备端解耦来缩短数据传输的链路距离。通过检测和分离热数据和冷数据,大大降低了有效的数据迁移和GC操作频率,提高了SSD系统的整体性能。为了验证设计的优越性,我们通过软硬件协同设计搭建了一个测试平台。实验结果表明,与主流ssd相比,随机读和随机写带宽分别提高了159.7%和25.3%。单个GC操作的延迟平均减少了12.64%,GC频率最多减少了64.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Garbage collection optimization with data separation for large data storage in deep learning applications
Deep learning has revolutionized numerous domains, creating an urgent need for storage systems capable of handling massive datasets and the intensive computational demands inherent to these workloads. Solid-State Drives (SSDs), known for their fast random access, low power consumption, and shock resistance, have emerged as a preferred storage medium in this context. However, traditional SSDs face critical challenges, including garbage collection (GC) overhead, write amplification, and inefficiencies in the software storage stack, stemming from the intrinsic characteristics of NAND flash and limitations in the existing storage ecosystem. These challenges underscore the necessity for specialized SSD controller chip designs tailored for deep learning workloads, addressing performance bottlenecks and optimizing data management to meet the unique demands of AI-driven applications. In this work, we implemented an open-channel SSD (OCSSD) based on a Xilinx FPGA, which can effectively alleviate the above-mentioned issues by exposing the structural characteristics of NAND flash to the host. To mitigate the performance cliff of I/O requests during GC operations, the link distance for data transmission is shortened by decoupling the host end and the device end. Moreover, the valid data migration and the GC operation frequency are both dramatically reduced by detecting and separating hot data and cold data to improve the overall performance of the SSD system. To verify the superiority of our design, we build a test platform through hardware and software co-design. The experimental results show that random read and random write bandwidth are increased by 159.7 % and 25.3 % compared to the mainstream SSDs, respectively. The latency of a single GC operation is reduced by an average of 12.64 % and the GC frequency is lowered by up to 64.8 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信