Elen Maria Feliciano Pereira , Alejandro Lopez-Castillo , Leandro Martins
{"title":"Chabazite催化剂上MTO反应活性中间体的演化","authors":"Elen Maria Feliciano Pereira , Alejandro Lopez-Castillo , Leandro Martins","doi":"10.1016/j.micromeso.2025.113574","DOIUrl":null,"url":null,"abstract":"<div><div>The activity of the chabazite zeolite in the Methanol to Olefins (MTO) reaction is tightly connected to the organic intermediates confined in its pores. The intermediates and the pores of near dimensions construct a reciprocal reaction environment for the MTO, known as the hydrocarbon pool (HP) mechanism. The chabazite structure (CHA) stands out in MTO due to the three-dimensional system of large pores connected by small openings, allowing the confinement of the intermediates, allowing small olefins to diffuse in and out. Herein, the organic intermediates in the HP arose as soon as the CHA catalyst was subjected to reaction temperature under a methanol flow. HP was identified to be composed of bridged-ring alkanes (at very low temperatures) and polyaromatics of up to five rings, which grew throughout the reaction, leading to the deactivation of the catalyst. The most active species are the least polymeric. The systematic increase in reaction temperature from 190 to 450 °C revealed a combined change of the zeolite's crystalline structure, which elongates into the c-direction, while olefins are formed. DFT computational simulations confirmed confinement is a spontaneous process forming a hybrid organic-inorganic environment active in the MTO reaction. Other DFT results expanded the understanding of the molecular confinement related to interaction energies with and without system deformation in obtaining geometric parameters beyond the experimental resolution.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"389 ","pages":"Article 113574"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of active intermediates in MTO reaction on a Chabazite catalyst\",\"authors\":\"Elen Maria Feliciano Pereira , Alejandro Lopez-Castillo , Leandro Martins\",\"doi\":\"10.1016/j.micromeso.2025.113574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The activity of the chabazite zeolite in the Methanol to Olefins (MTO) reaction is tightly connected to the organic intermediates confined in its pores. The intermediates and the pores of near dimensions construct a reciprocal reaction environment for the MTO, known as the hydrocarbon pool (HP) mechanism. The chabazite structure (CHA) stands out in MTO due to the three-dimensional system of large pores connected by small openings, allowing the confinement of the intermediates, allowing small olefins to diffuse in and out. Herein, the organic intermediates in the HP arose as soon as the CHA catalyst was subjected to reaction temperature under a methanol flow. HP was identified to be composed of bridged-ring alkanes (at very low temperatures) and polyaromatics of up to five rings, which grew throughout the reaction, leading to the deactivation of the catalyst. The most active species are the least polymeric. The systematic increase in reaction temperature from 190 to 450 °C revealed a combined change of the zeolite's crystalline structure, which elongates into the c-direction, while olefins are formed. DFT computational simulations confirmed confinement is a spontaneous process forming a hybrid organic-inorganic environment active in the MTO reaction. Other DFT results expanded the understanding of the molecular confinement related to interaction energies with and without system deformation in obtaining geometric parameters beyond the experimental resolution.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"389 \",\"pages\":\"Article 113574\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181125000885\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125000885","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Evolution of active intermediates in MTO reaction on a Chabazite catalyst
The activity of the chabazite zeolite in the Methanol to Olefins (MTO) reaction is tightly connected to the organic intermediates confined in its pores. The intermediates and the pores of near dimensions construct a reciprocal reaction environment for the MTO, known as the hydrocarbon pool (HP) mechanism. The chabazite structure (CHA) stands out in MTO due to the three-dimensional system of large pores connected by small openings, allowing the confinement of the intermediates, allowing small olefins to diffuse in and out. Herein, the organic intermediates in the HP arose as soon as the CHA catalyst was subjected to reaction temperature under a methanol flow. HP was identified to be composed of bridged-ring alkanes (at very low temperatures) and polyaromatics of up to five rings, which grew throughout the reaction, leading to the deactivation of the catalyst. The most active species are the least polymeric. The systematic increase in reaction temperature from 190 to 450 °C revealed a combined change of the zeolite's crystalline structure, which elongates into the c-direction, while olefins are formed. DFT computational simulations confirmed confinement is a spontaneous process forming a hybrid organic-inorganic environment active in the MTO reaction. Other DFT results expanded the understanding of the molecular confinement related to interaction energies with and without system deformation in obtaining geometric parameters beyond the experimental resolution.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.