PFOA同分异构体阻断电子传递链,引起拟南芥叶片代谢损伤

IF 9 Q1 ENVIRONMENTAL SCIENCES
Hao Wang , Jianxiong Mei , Zeying He , Bingjie Liu , Jishi Wang , Yue Geng , Yanwei Zhang
{"title":"PFOA同分异构体阻断电子传递链,引起拟南芥叶片代谢损伤","authors":"Hao Wang ,&nbsp;Jianxiong Mei ,&nbsp;Zeying He ,&nbsp;Bingjie Liu ,&nbsp;Jishi Wang ,&nbsp;Yue Geng ,&nbsp;Yanwei Zhang","doi":"10.1016/j.enceco.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div>Different metabolic damage could be caused by PFOA isomers, although the harm mechanism has not been well studied. The effects of PFOA isomers on Arabidopsis metabolism were investigated using metabolomics, proteomics and molecular docking. Compared to Pn (linear PFOA), P3 (3 - methyl - perfluoroheptanoic acid, P3MHpA) induced a greater amount of oxidative damage and more dysregulation proteins. Both PFOA isomers caused significant metabolic disorders in oxidative stress and photosynthetic dysregulation, and they happened in similar molecular components including chloroplast and thylakoids. Proteins were more readily bound by ionic PFOA, and P3 exhibited higher ability than Pn. Isomers of the ionic PFOA bound to proteins in photosynthesis, particularly the ETC proteins, leading to a blockage of the electron transport chains in the chloroplast, which induced oxidative stress and photosynthetic toxicity. This study provides a novel and important mechanism for the photosynthetic toxicity of different PFOA isomers.</div></div>","PeriodicalId":100480,"journal":{"name":"Environmental Chemistry and Ecotoxicology","volume":"7 ","pages":"Pages 516-526"},"PeriodicalIF":9.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The blockage of the electron transport chains caused by PFOA isomers induced metabolic damage of Arabidopsis leaves\",\"authors\":\"Hao Wang ,&nbsp;Jianxiong Mei ,&nbsp;Zeying He ,&nbsp;Bingjie Liu ,&nbsp;Jishi Wang ,&nbsp;Yue Geng ,&nbsp;Yanwei Zhang\",\"doi\":\"10.1016/j.enceco.2025.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Different metabolic damage could be caused by PFOA isomers, although the harm mechanism has not been well studied. The effects of PFOA isomers on Arabidopsis metabolism were investigated using metabolomics, proteomics and molecular docking. Compared to Pn (linear PFOA), P3 (3 - methyl - perfluoroheptanoic acid, P3MHpA) induced a greater amount of oxidative damage and more dysregulation proteins. Both PFOA isomers caused significant metabolic disorders in oxidative stress and photosynthetic dysregulation, and they happened in similar molecular components including chloroplast and thylakoids. Proteins were more readily bound by ionic PFOA, and P3 exhibited higher ability than Pn. Isomers of the ionic PFOA bound to proteins in photosynthesis, particularly the ETC proteins, leading to a blockage of the electron transport chains in the chloroplast, which induced oxidative stress and photosynthetic toxicity. This study provides a novel and important mechanism for the photosynthetic toxicity of different PFOA isomers.</div></div>\",\"PeriodicalId\":100480,\"journal\":{\"name\":\"Environmental Chemistry and Ecotoxicology\",\"volume\":\"7 \",\"pages\":\"Pages 516-526\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry and Ecotoxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590182625000153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry and Ecotoxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590182625000153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

PFOA异构体可引起不同程度的代谢损伤,但其危害机制尚未得到很好的研究。采用代谢组学、蛋白质组学和分子对接等方法研究了PFOA异构体对拟南芥代谢的影响。与Pn(线性PFOA)相比,P3(3 -甲基-全氟庚酸,P3MHpA)诱导了更多的氧化损伤和更多的失调蛋白。这两种PFOA异构体在氧化应激和光合失调中都引起了显著的代谢紊乱,并且它们发生在类似的分子成分中,包括叶绿体和类囊体。蛋白质更容易被离子PFOA结合,P3表现出比Pn更高的能力。离子PFOA的同分异构体在光合作用中与蛋白质结合,特别是ETC蛋白质,导致叶绿体中电子传递链的阻塞,从而诱导氧化应激和光合毒性。该研究为不同PFOA异构体的光合毒性提供了一个新的重要机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The blockage of the electron transport chains caused by PFOA isomers induced metabolic damage of Arabidopsis leaves

The blockage of the electron transport chains caused by PFOA isomers induced metabolic damage of Arabidopsis leaves
Different metabolic damage could be caused by PFOA isomers, although the harm mechanism has not been well studied. The effects of PFOA isomers on Arabidopsis metabolism were investigated using metabolomics, proteomics and molecular docking. Compared to Pn (linear PFOA), P3 (3 - methyl - perfluoroheptanoic acid, P3MHpA) induced a greater amount of oxidative damage and more dysregulation proteins. Both PFOA isomers caused significant metabolic disorders in oxidative stress and photosynthetic dysregulation, and they happened in similar molecular components including chloroplast and thylakoids. Proteins were more readily bound by ionic PFOA, and P3 exhibited higher ability than Pn. Isomers of the ionic PFOA bound to proteins in photosynthesis, particularly the ETC proteins, leading to a blockage of the electron transport chains in the chloroplast, which induced oxidative stress and photosynthetic toxicity. This study provides a novel and important mechanism for the photosynthetic toxicity of different PFOA isomers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信