从硬组织到超越:含锶生物材料在再生医学应用中的进展和挑战

IF 18 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Liyun Wang , Shengjie Jiang , Jialiang Zhou , Mazaher Gholipourmalekabadi , Yuan Cao , Kaili Lin , Yu Zhuang , Changyong Yuan
{"title":"从硬组织到超越:含锶生物材料在再生医学应用中的进展和挑战","authors":"Liyun Wang ,&nbsp;Shengjie Jiang ,&nbsp;Jialiang Zhou ,&nbsp;Mazaher Gholipourmalekabadi ,&nbsp;Yuan Cao ,&nbsp;Kaili Lin ,&nbsp;Yu Zhuang ,&nbsp;Changyong Yuan","doi":"10.1016/j.bioactmat.2025.02.039","DOIUrl":null,"url":null,"abstract":"<div><div>Tissue engineering and regenerative medicine have emerged as crucial disciplines focused on the development of new tissues and organs to overcome the limitations of traditional treatments for tissue damage caused by accidents, diseases, or aging. Strontium ion (Sr<sup>2+</sup>) has garnered significant attention for its multifaceted role in promoting regeneration medicine and therapy, especially in bone tissue regeneration. Recently, numerous studies further confirm that Sr<sup>2+</sup> also plays a critical in soft tissue regeneration. This review firstly summarizes the influence of Sr<sup>2+</sup> on critical biological processes such as osteogenesis, angiogenesis, immune modulation, matrix synthesis, mineralization, and antioxidative defence mechanisms. Then details the classification, properties, advantages, and limitations of Sr-containing biomaterials (SrBMs). Additionally, this review extends to the current applications of SrBMs in regenerative medicine for diverse tissues, including bone, cartilage, skeletal muscle, dental pulp, cardiac tissue, skin, hair follicles, etc. Moreover, the review addresses the challenges associated with current SrBMs and provides insights for their future designing and applications in regenerative medicine.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"49 ","pages":"Pages 85-120"},"PeriodicalIF":18.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From hard tissues to beyond: Progress and challenges of strontium-containing biomaterials in regenerative medicine applications\",\"authors\":\"Liyun Wang ,&nbsp;Shengjie Jiang ,&nbsp;Jialiang Zhou ,&nbsp;Mazaher Gholipourmalekabadi ,&nbsp;Yuan Cao ,&nbsp;Kaili Lin ,&nbsp;Yu Zhuang ,&nbsp;Changyong Yuan\",\"doi\":\"10.1016/j.bioactmat.2025.02.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tissue engineering and regenerative medicine have emerged as crucial disciplines focused on the development of new tissues and organs to overcome the limitations of traditional treatments for tissue damage caused by accidents, diseases, or aging. Strontium ion (Sr<sup>2+</sup>) has garnered significant attention for its multifaceted role in promoting regeneration medicine and therapy, especially in bone tissue regeneration. Recently, numerous studies further confirm that Sr<sup>2+</sup> also plays a critical in soft tissue regeneration. This review firstly summarizes the influence of Sr<sup>2+</sup> on critical biological processes such as osteogenesis, angiogenesis, immune modulation, matrix synthesis, mineralization, and antioxidative defence mechanisms. Then details the classification, properties, advantages, and limitations of Sr-containing biomaterials (SrBMs). Additionally, this review extends to the current applications of SrBMs in regenerative medicine for diverse tissues, including bone, cartilage, skeletal muscle, dental pulp, cardiac tissue, skin, hair follicles, etc. Moreover, the review addresses the challenges associated with current SrBMs and provides insights for their future designing and applications in regenerative medicine.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"49 \",\"pages\":\"Pages 85-120\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X25000957\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000957","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

组织工程和再生医学已经成为关键学科,专注于开发新的组织和器官,以克服传统治疗方法的局限性,以治疗由事故、疾病或衰老引起的组织损伤。锶离子(Sr2+)因其在促进再生医学和治疗,特别是骨组织再生方面的多方面作用而受到广泛关注。近年来,大量研究进一步证实Sr2+在软组织再生中也起着至关重要的作用。本文首先综述了Sr2+对骨生成、血管生成、免疫调节、基质合成、矿化和抗氧化防御机制等关键生物学过程的影响。然后详细介绍了含锶生物材料(srbm)的分类、性质、优点和局限性。此外,本文还综述了srbm在再生医学中不同组织的应用,包括骨、软骨、骨骼肌、牙髓、心脏组织、皮肤、毛囊等。此外,本文还讨论了与当前srbm相关的挑战,并为其未来的设计和在再生医学中的应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

From hard tissues to beyond: Progress and challenges of strontium-containing biomaterials in regenerative medicine applications

From hard tissues to beyond: Progress and challenges of strontium-containing biomaterials in regenerative medicine applications
Tissue engineering and regenerative medicine have emerged as crucial disciplines focused on the development of new tissues and organs to overcome the limitations of traditional treatments for tissue damage caused by accidents, diseases, or aging. Strontium ion (Sr2+) has garnered significant attention for its multifaceted role in promoting regeneration medicine and therapy, especially in bone tissue regeneration. Recently, numerous studies further confirm that Sr2+ also plays a critical in soft tissue regeneration. This review firstly summarizes the influence of Sr2+ on critical biological processes such as osteogenesis, angiogenesis, immune modulation, matrix synthesis, mineralization, and antioxidative defence mechanisms. Then details the classification, properties, advantages, and limitations of Sr-containing biomaterials (SrBMs). Additionally, this review extends to the current applications of SrBMs in regenerative medicine for diverse tissues, including bone, cartilage, skeletal muscle, dental pulp, cardiac tissue, skin, hair follicles, etc. Moreover, the review addresses the challenges associated with current SrBMs and provides insights for their future designing and applications in regenerative medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioactive Materials
Bioactive Materials Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍: Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms. The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms. The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials: Bioactive metals and alloys Bioactive inorganics: ceramics, glasses, and carbon-based materials Bioactive polymers and gels Bioactive materials derived from natural sources Bioactive composites These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信