具有碰撞临界点的三次多项式的树伽罗瓦群

IF 0.6 3区 数学 Q3 MATHEMATICS
Robert L. Benedetto , William DeGroot , Xinyu Ni , Jesse Seid , Annie Wei , Samantha Winton
{"title":"具有碰撞临界点的三次多项式的树伽罗瓦群","authors":"Robert L. Benedetto ,&nbsp;William DeGroot ,&nbsp;Xinyu Ni ,&nbsp;Jesse Seid ,&nbsp;Annie Wei ,&nbsp;Samantha Winton","doi":"10.1016/j.jnt.2025.01.021","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>K</em> be a field, and let <span><math><mi>f</mi><mo>∈</mo><mi>K</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> be a rational function of degree <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. The Galois group of the field extension generated by the preimages of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>K</mi></math></span> under all iterates of <em>f</em> naturally embeds in the automorphism group of an infinite <em>d</em>-ary rooted tree. In some cases the Galois group can be the full automorphism group of the tree, but in other cases it is known to have infinite index. In this paper, we consider a previously unstudied such case: that <em>f</em> is a polynomial of degree <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>, and the two finite critical points of <em>f</em> collide at the <em>ℓ</em>-th iteration, for some <span><math><mi>ℓ</mi><mo>≥</mo><mn>2</mn></math></span>. We describe an explicit subgroup <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>ℓ</mi><mo>,</mo><mo>∞</mo></mrow></msub></math></span> of automorphisms of the 3-ary tree in which the resulting Galois group must always embed, and we present sufficient conditions for this embedding to be an isomorphism.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"274 ","pages":"Pages 72-103"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arboreal Galois groups for cubic polynomials with colliding critical points\",\"authors\":\"Robert L. Benedetto ,&nbsp;William DeGroot ,&nbsp;Xinyu Ni ,&nbsp;Jesse Seid ,&nbsp;Annie Wei ,&nbsp;Samantha Winton\",\"doi\":\"10.1016/j.jnt.2025.01.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>K</em> be a field, and let <span><math><mi>f</mi><mo>∈</mo><mi>K</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> be a rational function of degree <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. The Galois group of the field extension generated by the preimages of <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>K</mi></math></span> under all iterates of <em>f</em> naturally embeds in the automorphism group of an infinite <em>d</em>-ary rooted tree. In some cases the Galois group can be the full automorphism group of the tree, but in other cases it is known to have infinite index. In this paper, we consider a previously unstudied such case: that <em>f</em> is a polynomial of degree <span><math><mi>d</mi><mo>=</mo><mn>3</mn></math></span>, and the two finite critical points of <em>f</em> collide at the <em>ℓ</em>-th iteration, for some <span><math><mi>ℓ</mi><mo>≥</mo><mn>2</mn></math></span>. We describe an explicit subgroup <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>ℓ</mi><mo>,</mo><mo>∞</mo></mrow></msub></math></span> of automorphisms of the 3-ary tree in which the resulting Galois group must always embed, and we present sufficient conditions for this embedding to be an isomorphism.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"274 \",\"pages\":\"Pages 72-103\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25000502\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25000502","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设K为一个域,设f∈K(z)为阶数d≥2的有理函数。由x0∈K的原像在f的所有迭代下生成的域扩展的伽罗瓦群自然嵌入到无限d元根树的自同构群中。在某些情况下,伽罗瓦群可以是树的完全自同构群,但在其他情况下,已知它具有无限索引。本文考虑了一种以前没有研究过的情况:f是一个d=3次的多项式,且对于某些r≥2,f的两个有限临界点在第n次迭代时发生碰撞。我们描述了三元树的自同构的显式子群Q,∞,由此得到的伽罗瓦群必须总是嵌入其中,并给出了这种嵌入是同构的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arboreal Galois groups for cubic polynomials with colliding critical points
Let K be a field, and let fK(z) be a rational function of degree d2. The Galois group of the field extension generated by the preimages of x0K under all iterates of f naturally embeds in the automorphism group of an infinite d-ary rooted tree. In some cases the Galois group can be the full automorphism group of the tree, but in other cases it is known to have infinite index. In this paper, we consider a previously unstudied such case: that f is a polynomial of degree d=3, and the two finite critical points of f collide at the -th iteration, for some 2. We describe an explicit subgroup Q, of automorphisms of the 3-ary tree in which the resulting Galois group must always embed, and we present sufficient conditions for this embedding to be an isomorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信