评价MoOPO4作为镁离子电池电极材料可行性的第一性原理方法

IF 3.4 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jingdong Yang*, Jiaxin Wen, Junliu Ye, Xiaoyang Dong, Guangshen Huang, Jingfeng Wang, Jinxing Wang* and Fusheng Pan, 
{"title":"评价MoOPO4作为镁离子电池电极材料可行性的第一性原理方法","authors":"Jingdong Yang*,&nbsp;Jiaxin Wen,&nbsp;Junliu Ye,&nbsp;Xiaoyang Dong,&nbsp;Guangshen Huang,&nbsp;Jingfeng Wang,&nbsp;Jinxing Wang* and Fusheng Pan,&nbsp;","doi":"10.1021/acs.cgd.4c0163110.1021/acs.cgd.4c01631","DOIUrl":null,"url":null,"abstract":"<p >Searching for novel high-performance magnesium battery cathodes is an attractive subject in the development of energy storage devices. In this work, density functional theory calculations are employed to predict the theoretical feasibility of bulk MoOPO<sub>4</sub> (B-MoOPO<sub>4</sub>) and monolayer MoOPO<sub>4</sub> (M-MoOPO<sub>4</sub>) as magnesium battery electrodes. The structural and electronic properties of both MoOPO<sub>4</sub> are investigated, with a particular emphasis on the magnesium storage and diffusion behaviors within the structures. The results reveal that both B-MoOPO<sub>4</sub> and M-MoOPO<sub>4</sub> exhibit favorable electronic conductivity and low magnesium ion diffusion barriers, suggesting their potential for high rate performance. Furthermore, both B-MoOPO<sub>4</sub> and M-MoVOPO<sub>4</sub> possess a substantial number of active sites available for magnesium storage, with theoretical capacities of 259 mAh/g and 130 mAh/g, respectively, and theoretical energy densities reaching 417 and 73 Wh/kg, respectively. Open-circuit voltage calculations indicate a magnesiation voltage window of 1.95 to 1.01 V for B-MoOPO<sub>4</sub> and a voltage window of 0.67 to 0.44 V for M-MoOPO<sub>4</sub>. In conclusion, both B-MoOPO<sub>4</sub> and M-MoOPO<sub>4</sub> demonstrate the feasibility of serving as magnesium battery electrodes. B-MoOPO<sub>4</sub> is better suited as a cathode due to its higher intercalation potential, while M-MoOPO<sub>4</sub>, with its lower magnesium intercalation potential, is more inclined to serve as an anode.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 5","pages":"1545–1555 1545–1555"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-Principles Approach to Assess the Viability of MoOPO4 as an Electrode Material for Mg-Ion Batteries\",\"authors\":\"Jingdong Yang*,&nbsp;Jiaxin Wen,&nbsp;Junliu Ye,&nbsp;Xiaoyang Dong,&nbsp;Guangshen Huang,&nbsp;Jingfeng Wang,&nbsp;Jinxing Wang* and Fusheng Pan,&nbsp;\",\"doi\":\"10.1021/acs.cgd.4c0163110.1021/acs.cgd.4c01631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Searching for novel high-performance magnesium battery cathodes is an attractive subject in the development of energy storage devices. In this work, density functional theory calculations are employed to predict the theoretical feasibility of bulk MoOPO<sub>4</sub> (B-MoOPO<sub>4</sub>) and monolayer MoOPO<sub>4</sub> (M-MoOPO<sub>4</sub>) as magnesium battery electrodes. The structural and electronic properties of both MoOPO<sub>4</sub> are investigated, with a particular emphasis on the magnesium storage and diffusion behaviors within the structures. The results reveal that both B-MoOPO<sub>4</sub> and M-MoOPO<sub>4</sub> exhibit favorable electronic conductivity and low magnesium ion diffusion barriers, suggesting their potential for high rate performance. Furthermore, both B-MoOPO<sub>4</sub> and M-MoVOPO<sub>4</sub> possess a substantial number of active sites available for magnesium storage, with theoretical capacities of 259 mAh/g and 130 mAh/g, respectively, and theoretical energy densities reaching 417 and 73 Wh/kg, respectively. Open-circuit voltage calculations indicate a magnesiation voltage window of 1.95 to 1.01 V for B-MoOPO<sub>4</sub> and a voltage window of 0.67 to 0.44 V for M-MoOPO<sub>4</sub>. In conclusion, both B-MoOPO<sub>4</sub> and M-MoOPO<sub>4</sub> demonstrate the feasibility of serving as magnesium battery electrodes. B-MoOPO<sub>4</sub> is better suited as a cathode due to its higher intercalation potential, while M-MoOPO<sub>4</sub>, with its lower magnesium intercalation potential, is more inclined to serve as an anode.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 5\",\"pages\":\"1545–1555 1545–1555\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01631\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01631","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

寻找新型高性能镁电池负极是储能器件发展中一个有吸引力的课题。本研究采用密度泛函理论计算,预测了大块MoOPO4 (B-MoOPO4)和单层MoOPO4 (M-MoOPO4)作为镁电池电极的理论可行性。研究了这两种MoOPO4的结构和电子特性,特别强调了镁在结构中的储存和扩散行为。结果表明,B-MoOPO4和M-MoOPO4均具有良好的电子导电性和较低的镁离子扩散障碍,表明它们具有高速率性能的潜力。此外,B-MoOPO4和m - moopo4均具有大量可用于镁储存的活性位点,理论容量分别为259 mAh/g和130 mAh/g,理论能量密度分别达到417和73 Wh/kg。开路电压计算表明,B-MoOPO4的镁化电压窗为1.95 ~ 1.01 V, M-MoOPO4的镁化电压窗为0.67 ~ 0.44 V。综上所述,B-MoOPO4和M-MoOPO4都证明了作为镁电池电极的可行性。B-MoOPO4具有较高的插层电位,更适合作为阴极,而M-MoOPO4具有较低的镁插层电位,更倾向于作为阳极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First-Principles Approach to Assess the Viability of MoOPO4 as an Electrode Material for Mg-Ion Batteries

First-Principles Approach to Assess the Viability of MoOPO4 as an Electrode Material for Mg-Ion Batteries

Searching for novel high-performance magnesium battery cathodes is an attractive subject in the development of energy storage devices. In this work, density functional theory calculations are employed to predict the theoretical feasibility of bulk MoOPO4 (B-MoOPO4) and monolayer MoOPO4 (M-MoOPO4) as magnesium battery electrodes. The structural and electronic properties of both MoOPO4 are investigated, with a particular emphasis on the magnesium storage and diffusion behaviors within the structures. The results reveal that both B-MoOPO4 and M-MoOPO4 exhibit favorable electronic conductivity and low magnesium ion diffusion barriers, suggesting their potential for high rate performance. Furthermore, both B-MoOPO4 and M-MoVOPO4 possess a substantial number of active sites available for magnesium storage, with theoretical capacities of 259 mAh/g and 130 mAh/g, respectively, and theoretical energy densities reaching 417 and 73 Wh/kg, respectively. Open-circuit voltage calculations indicate a magnesiation voltage window of 1.95 to 1.01 V for B-MoOPO4 and a voltage window of 0.67 to 0.44 V for M-MoOPO4. In conclusion, both B-MoOPO4 and M-MoOPO4 demonstrate the feasibility of serving as magnesium battery electrodes. B-MoOPO4 is better suited as a cathode due to its higher intercalation potential, while M-MoOPO4, with its lower magnesium intercalation potential, is more inclined to serve as an anode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信