通过等离子体诱导共振能量转移在水环境中高稳定性可打印的钙钛矿SERS衬底

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Minghui Niu, Chengwei Shan, Chenlong Xue, Xiaowei Xu, Aoyan Zhang, Yihong Xiao, Junyu Wei, Defeng Zou, Gina Jinna Chen*, Aung Ko Ko Kyaw* and Perry Ping Shum*, 
{"title":"通过等离子体诱导共振能量转移在水环境中高稳定性可打印的钙钛矿SERS衬底","authors":"Minghui Niu,&nbsp;Chengwei Shan,&nbsp;Chenlong Xue,&nbsp;Xiaowei Xu,&nbsp;Aoyan Zhang,&nbsp;Yihong Xiao,&nbsp;Junyu Wei,&nbsp;Defeng Zou,&nbsp;Gina Jinna Chen*,&nbsp;Aung Ko Ko Kyaw* and Perry Ping Shum*,&nbsp;","doi":"10.1021/acsami.4c2106910.1021/acsami.4c21069","DOIUrl":null,"url":null,"abstract":"<p >The excellent photoelectric conversion efficiency and tunable bandgap of metal halide perovskites make them highly suitable for SERS applications. However, the low stability of perovskites in water and oxygen greatly hinders their use in SERS detection, particularly in biomolecule detection applications, which often require water-based test solutions. Herein, we report a gold (Au)/perovskite-polyvinylidene difluoride (PVDF) nanocomposite/ZnO nanoflower (GPPZ) SERS substrate capable of functioning in aqueous solutions. Its enhancement ability is attributed to plasmon-induced resonance energy transfer (PIRET) and an electromagnetic mechanism. The surface plasmon resonance created by ultrathin Au and ZnO nanoflowers induces resonance energy transfers to the perovskite via PIRET, facilitating a quasi-matched charge transfer between the perovskite and the probe molecule. The PVDF coating protects the perovskite from water and oxygen without affecting the resonance energy-transfer process. As a result, an enhancement factor (EF) approaching 1 × 10<sup>6</sup> was achieved for the crystal violet molecule. Additionally, we fabricated a flexible GPPZ substrate using silk screen printing, enabling mass production of an SERS array substrate. The printed flexible GPPZ substrates demonstrated micromole-level cysteine detection with an EF of 6.8 × 10<sup>5</sup>, showing potential for application in hyperhomocysteinemia diagnosis.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 9","pages":"13538–13551 13538–13551"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Stability Printable Perovskite SERS Substrates in an Aqueous Environment via Plasmon-Induced Resonance Energy Transfer\",\"authors\":\"Minghui Niu,&nbsp;Chengwei Shan,&nbsp;Chenlong Xue,&nbsp;Xiaowei Xu,&nbsp;Aoyan Zhang,&nbsp;Yihong Xiao,&nbsp;Junyu Wei,&nbsp;Defeng Zou,&nbsp;Gina Jinna Chen*,&nbsp;Aung Ko Ko Kyaw* and Perry Ping Shum*,&nbsp;\",\"doi\":\"10.1021/acsami.4c2106910.1021/acsami.4c21069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The excellent photoelectric conversion efficiency and tunable bandgap of metal halide perovskites make them highly suitable for SERS applications. However, the low stability of perovskites in water and oxygen greatly hinders their use in SERS detection, particularly in biomolecule detection applications, which often require water-based test solutions. Herein, we report a gold (Au)/perovskite-polyvinylidene difluoride (PVDF) nanocomposite/ZnO nanoflower (GPPZ) SERS substrate capable of functioning in aqueous solutions. Its enhancement ability is attributed to plasmon-induced resonance energy transfer (PIRET) and an electromagnetic mechanism. The surface plasmon resonance created by ultrathin Au and ZnO nanoflowers induces resonance energy transfers to the perovskite via PIRET, facilitating a quasi-matched charge transfer between the perovskite and the probe molecule. The PVDF coating protects the perovskite from water and oxygen without affecting the resonance energy-transfer process. As a result, an enhancement factor (EF) approaching 1 × 10<sup>6</sup> was achieved for the crystal violet molecule. Additionally, we fabricated a flexible GPPZ substrate using silk screen printing, enabling mass production of an SERS array substrate. The printed flexible GPPZ substrates demonstrated micromole-level cysteine detection with an EF of 6.8 × 10<sup>5</sup>, showing potential for application in hyperhomocysteinemia diagnosis.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 9\",\"pages\":\"13538–13551 13538–13551\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c21069\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c21069","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属卤化物钙钛矿优异的光电转换效率和可调的带隙使其非常适合于SERS应用。然而,钙钛矿在水和氧中的低稳定性极大地阻碍了它们在SERS检测中的应用,特别是在生物分子检测应用中,这通常需要水基测试溶液。在此,我们报道了一种能够在水溶液中起作用的金(Au)/钙钛矿-聚偏氟乙烯(PVDF)纳米复合材料/ZnO纳米花(GPPZ) SERS底物。其增强能力归因于等离子体诱导共振能量转移(PIRET)和电磁机制。超薄Au和ZnO纳米花产生的表面等离子体共振通过PIRET诱导共振能量转移到钙钛矿,促进钙钛矿和探针分子之间的准匹配电荷转移。PVDF涂层保护钙钛矿不受水和氧的影响,而不影响共振能量转移过程。结果表明,结晶紫分子的增强因子(EF)接近1 × 106。此外,我们使用丝网印刷制造了柔性GPPZ衬底,从而实现了SERS阵列衬底的批量生产。打印的柔性GPPZ衬底显示出微摩尔水平的半胱氨酸检测,EF为6.8 × 105,显示出在高同型半胱氨酸血症诊断中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Stability Printable Perovskite SERS Substrates in an Aqueous Environment via Plasmon-Induced Resonance Energy Transfer

High-Stability Printable Perovskite SERS Substrates in an Aqueous Environment via Plasmon-Induced Resonance Energy Transfer

The excellent photoelectric conversion efficiency and tunable bandgap of metal halide perovskites make them highly suitable for SERS applications. However, the low stability of perovskites in water and oxygen greatly hinders their use in SERS detection, particularly in biomolecule detection applications, which often require water-based test solutions. Herein, we report a gold (Au)/perovskite-polyvinylidene difluoride (PVDF) nanocomposite/ZnO nanoflower (GPPZ) SERS substrate capable of functioning in aqueous solutions. Its enhancement ability is attributed to plasmon-induced resonance energy transfer (PIRET) and an electromagnetic mechanism. The surface plasmon resonance created by ultrathin Au and ZnO nanoflowers induces resonance energy transfers to the perovskite via PIRET, facilitating a quasi-matched charge transfer between the perovskite and the probe molecule. The PVDF coating protects the perovskite from water and oxygen without affecting the resonance energy-transfer process. As a result, an enhancement factor (EF) approaching 1 × 106 was achieved for the crystal violet molecule. Additionally, we fabricated a flexible GPPZ substrate using silk screen printing, enabling mass production of an SERS array substrate. The printed flexible GPPZ substrates demonstrated micromole-level cysteine detection with an EF of 6.8 × 105, showing potential for application in hyperhomocysteinemia diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信