利用氧化还原介质─丁基羟基甲苯了解锂氧电池的固相催化过程

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Bibhuti Bhusan Behera,  and , Bhabani S. Mallik*, 
{"title":"利用氧化还原介质─丁基羟基甲苯了解锂氧电池的固相催化过程","authors":"Bibhuti Bhusan Behera,&nbsp; and ,&nbsp;Bhabani S. Mallik*,&nbsp;","doi":"10.1021/acs.jpca.4c0855810.1021/acs.jpca.4c08558","DOIUrl":null,"url":null,"abstract":"<p >The redox mediators help prevent cathode passivation and promote the formation and decomposition of Li<sub>2</sub>O<sub>2</sub> within the electrolyte of the battery. Understanding the mechanistic properties of the soluble catalyst from an atomic level is crucial for developing an all-in-one multifunctional soluble catalyst for Li–O<sub>2</sub> batteries. With the help of density functional theory and atom-centered density matrix propagation molecular dynamics simulations, we report how butylated hydroxytoluene (BHT), an experimentally reported soluble catalyst, mediates the stabilization of reactive intermediates and the mechanism behind the formation and decomposition of Li<sub>2</sub>O<sub>2</sub>. The hydroxy group in BHT facilitates the stabilization of O<sub>2</sub><sup>•–</sup> via hydrogen bonding and the solvation of Li<sup>+</sup>, LiO<sub>2</sub><sup>•</sup>, and Li<sub>2</sub>O<sub>2</sub>. This characteristic of BHT helps to promote the solution-phase mechanism and suppress parasitic reactions induced by O<sub>2</sub><sup>•–</sup>. During the charging process, the reversibility of BHT and BHT<sup>•+</sup> happens and the disappearance of the hydrogen bonding interaction facilitates the delithiation process. The Mulliken charge distribution analysis shows that the reversibility of BHT and BHT<sup>•+</sup> is due to the electron delocalization between the oxygen atom and benzene ring of BHT. We observe the two benefits of the hydrogen bond: the presence and absence of hydrogen bonding enhance the formation and decomposition of Li<sub>2</sub>O<sub>2,</sub> respectively. We find that tetraethylene glycol dimethyl ether solvent plays a significant role in stabilizing lithium–oxygen-containing species such as LiO<sub>2</sub><sup>•</sup> and Li<sub>2</sub>O<sub>2</sub>. However, the presence of BHT further improves the results. This finding highlights the cooperative activity of BHT in conjugation with the tetraethylene glycol dimethyl ether solvent. The atom-centered density matrix propagation method reveals that BHT facilitates Li<sub>2</sub>O<sub>2</sub> decomposition through protonation, whereas BHT<sup>•+</sup> induces Li<sub>2</sub>O<sub>2</sub> decomposition by promoting the formation of LiO<sub>2</sub><sup>•</sup> and the BHT:Li<sup>+</sup> complex without transferring the proton.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 9","pages":"2227–2237 2227–2237"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Solution-Phase Catalysis Process inside the Li–O2 Battery Using Redox Mediator─Butylated Hydroxytoluene\",\"authors\":\"Bibhuti Bhusan Behera,&nbsp; and ,&nbsp;Bhabani S. Mallik*,&nbsp;\",\"doi\":\"10.1021/acs.jpca.4c0855810.1021/acs.jpca.4c08558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The redox mediators help prevent cathode passivation and promote the formation and decomposition of Li<sub>2</sub>O<sub>2</sub> within the electrolyte of the battery. Understanding the mechanistic properties of the soluble catalyst from an atomic level is crucial for developing an all-in-one multifunctional soluble catalyst for Li–O<sub>2</sub> batteries. With the help of density functional theory and atom-centered density matrix propagation molecular dynamics simulations, we report how butylated hydroxytoluene (BHT), an experimentally reported soluble catalyst, mediates the stabilization of reactive intermediates and the mechanism behind the formation and decomposition of Li<sub>2</sub>O<sub>2</sub>. The hydroxy group in BHT facilitates the stabilization of O<sub>2</sub><sup>•–</sup> via hydrogen bonding and the solvation of Li<sup>+</sup>, LiO<sub>2</sub><sup>•</sup>, and Li<sub>2</sub>O<sub>2</sub>. This characteristic of BHT helps to promote the solution-phase mechanism and suppress parasitic reactions induced by O<sub>2</sub><sup>•–</sup>. During the charging process, the reversibility of BHT and BHT<sup>•+</sup> happens and the disappearance of the hydrogen bonding interaction facilitates the delithiation process. The Mulliken charge distribution analysis shows that the reversibility of BHT and BHT<sup>•+</sup> is due to the electron delocalization between the oxygen atom and benzene ring of BHT. We observe the two benefits of the hydrogen bond: the presence and absence of hydrogen bonding enhance the formation and decomposition of Li<sub>2</sub>O<sub>2,</sub> respectively. We find that tetraethylene glycol dimethyl ether solvent plays a significant role in stabilizing lithium–oxygen-containing species such as LiO<sub>2</sub><sup>•</sup> and Li<sub>2</sub>O<sub>2</sub>. However, the presence of BHT further improves the results. This finding highlights the cooperative activity of BHT in conjugation with the tetraethylene glycol dimethyl ether solvent. The atom-centered density matrix propagation method reveals that BHT facilitates Li<sub>2</sub>O<sub>2</sub> decomposition through protonation, whereas BHT<sup>•+</sup> induces Li<sub>2</sub>O<sub>2</sub> decomposition by promoting the formation of LiO<sub>2</sub><sup>•</sup> and the BHT:Li<sup>+</sup> complex without transferring the proton.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\"129 9\",\"pages\":\"2227–2237 2227–2237\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpca.4c08558\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.4c08558","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化还原介质有助于防止阴极钝化,促进电池电解液中Li2O2的形成和分解。从原子水平上理解可溶性催化剂的机理性质对于开发一种多功能的锂氧电池可溶性催化剂至关重要。借助密度泛函理论和原子中心密度矩阵传播分子动力学模拟,我们报道了实验报道的可溶性催化剂丁基羟基甲苯(BHT)如何介导反应中间体的稳定以及Li2O2形成和分解的机制。BHT中的羟基通过氢键和Li+、LiO2•和Li2O2的溶剂化促进了O2•-的稳定。BHT的这一特性有助于促进溶液相机制,抑制O2•-诱导的寄生反应。在充电过程中,BHT和BHT•+发生可逆性,氢键相互作用的消失有利于衰减过程。Mulliken电荷分布分析表明BHT和BHT•+的可逆性是由于BHT的氧原子和苯环之间的电子离域。我们观察到氢键的两个好处:氢键的存在和不存在分别促进了Li2O2的形成和分解。我们发现四乙二醇二甲醚溶剂在稳定LiO2•和Li2O2等含锂氧物质中起着重要的作用。然而,BHT的存在进一步改善了结果。这一发现突出了BHT与四乙二醇二甲醚溶剂偶联的合作活性。原子中心密度矩阵传播方法表明BHT通过质子化作用促进Li2O2分解,而BHT•+则通过促进LiO2•和BHT:Li+络合物的形成而不转移质子来诱导Li2O2分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Understanding the Solution-Phase Catalysis Process inside the Li–O2 Battery Using Redox Mediator─Butylated Hydroxytoluene

Understanding the Solution-Phase Catalysis Process inside the Li–O2 Battery Using Redox Mediator─Butylated Hydroxytoluene

The redox mediators help prevent cathode passivation and promote the formation and decomposition of Li2O2 within the electrolyte of the battery. Understanding the mechanistic properties of the soluble catalyst from an atomic level is crucial for developing an all-in-one multifunctional soluble catalyst for Li–O2 batteries. With the help of density functional theory and atom-centered density matrix propagation molecular dynamics simulations, we report how butylated hydroxytoluene (BHT), an experimentally reported soluble catalyst, mediates the stabilization of reactive intermediates and the mechanism behind the formation and decomposition of Li2O2. The hydroxy group in BHT facilitates the stabilization of O2•– via hydrogen bonding and the solvation of Li+, LiO2, and Li2O2. This characteristic of BHT helps to promote the solution-phase mechanism and suppress parasitic reactions induced by O2•–. During the charging process, the reversibility of BHT and BHT•+ happens and the disappearance of the hydrogen bonding interaction facilitates the delithiation process. The Mulliken charge distribution analysis shows that the reversibility of BHT and BHT•+ is due to the electron delocalization between the oxygen atom and benzene ring of BHT. We observe the two benefits of the hydrogen bond: the presence and absence of hydrogen bonding enhance the formation and decomposition of Li2O2, respectively. We find that tetraethylene glycol dimethyl ether solvent plays a significant role in stabilizing lithium–oxygen-containing species such as LiO2 and Li2O2. However, the presence of BHT further improves the results. This finding highlights the cooperative activity of BHT in conjugation with the tetraethylene glycol dimethyl ether solvent. The atom-centered density matrix propagation method reveals that BHT facilitates Li2O2 decomposition through protonation, whereas BHT•+ induces Li2O2 decomposition by promoting the formation of LiO2 and the BHT:Li+ complex without transferring the proton.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信