基于槲皮素-铜络合的多孔聚合物对铬、汞和镉金属离子的吸附:实验与计算研究

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Raveena, Rahul Kalita, Maku Moronshing, Pratibha Kumari, Kuntal Manna, Rita Kakkar
{"title":"基于槲皮素-铜络合的多孔聚合物对铬、汞和镉金属离子的吸附:实验与计算研究","authors":"Raveena, Rahul Kalita, Maku Moronshing, Pratibha Kumari, Kuntal Manna, Rita Kakkar","doi":"10.1021/acs.iecr.4c04523","DOIUrl":null,"url":null,"abstract":"Heavy metal ions in water bodies pose a serious threat to human health and the environment. To overcome this issue, we developed a polymeric quercetin–copper complex (QC) as a novel adsorbent for heavy metal removal. This material was characterized using different techniques. Its structure was also investigated using density functional theory (DFT) calculations, which revealed the formation of a highly stable 2:1 complex between quercetin and Cu<sup>2+</sup> ion. The QC polymer exhibited &gt;95% adsorption efficiency for removing heavy metals under acidic and neutral pH conditions. The adsorption capacities were 2.50, 0.77, and 0.54 mmol/g for Cr<sup>3+</sup>, Hg<sup>2+</sup>, and Cd<sup>2+</sup> ions, respectively, under neutral pH conditions. DFT calculations also indicated high adsorption energies of −34.32, −15.10, and −12.37 eV for Cr<sup>3+</sup>, Hg<sup>2+</sup>, and Cd<sup>2+</sup>, respectively. The QC polymer was easily recovered and reused for removal studies of these metal ions without showing a significant loss in its adsorption capacity.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"42 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quercetin–Copper Complexation-Based Porous Polymer for Chromium, Mercury, and Cadmium Metal Ion Adsorption: Experimental and Computational Study\",\"authors\":\"Raveena, Rahul Kalita, Maku Moronshing, Pratibha Kumari, Kuntal Manna, Rita Kakkar\",\"doi\":\"10.1021/acs.iecr.4c04523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heavy metal ions in water bodies pose a serious threat to human health and the environment. To overcome this issue, we developed a polymeric quercetin–copper complex (QC) as a novel adsorbent for heavy metal removal. This material was characterized using different techniques. Its structure was also investigated using density functional theory (DFT) calculations, which revealed the formation of a highly stable 2:1 complex between quercetin and Cu<sup>2+</sup> ion. The QC polymer exhibited &gt;95% adsorption efficiency for removing heavy metals under acidic and neutral pH conditions. The adsorption capacities were 2.50, 0.77, and 0.54 mmol/g for Cr<sup>3+</sup>, Hg<sup>2+</sup>, and Cd<sup>2+</sup> ions, respectively, under neutral pH conditions. DFT calculations also indicated high adsorption energies of −34.32, −15.10, and −12.37 eV for Cr<sup>3+</sup>, Hg<sup>2+</sup>, and Cd<sup>2+</sup>, respectively. The QC polymer was easily recovered and reused for removal studies of these metal ions without showing a significant loss in its adsorption capacity.\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.iecr.4c04523\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c04523","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quercetin–Copper Complexation-Based Porous Polymer for Chromium, Mercury, and Cadmium Metal Ion Adsorption: Experimental and Computational Study

Quercetin–Copper Complexation-Based Porous Polymer for Chromium, Mercury, and Cadmium Metal Ion Adsorption: Experimental and Computational Study
Heavy metal ions in water bodies pose a serious threat to human health and the environment. To overcome this issue, we developed a polymeric quercetin–copper complex (QC) as a novel adsorbent for heavy metal removal. This material was characterized using different techniques. Its structure was also investigated using density functional theory (DFT) calculations, which revealed the formation of a highly stable 2:1 complex between quercetin and Cu2+ ion. The QC polymer exhibited >95% adsorption efficiency for removing heavy metals under acidic and neutral pH conditions. The adsorption capacities were 2.50, 0.77, and 0.54 mmol/g for Cr3+, Hg2+, and Cd2+ ions, respectively, under neutral pH conditions. DFT calculations also indicated high adsorption energies of −34.32, −15.10, and −12.37 eV for Cr3+, Hg2+, and Cd2+, respectively. The QC polymer was easily recovered and reused for removal studies of these metal ions without showing a significant loss in its adsorption capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信