二元共晶氟化物改性提高钠离子电池层状氧化物阴极结构稳定性

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xu Yang , Yingfei Li , Xinyu Li , Ting Lin , Weiguang Lin , Peihua Li , Dongdong Xiao , Shurong Wang , Huilin Pan
{"title":"二元共晶氟化物改性提高钠离子电池层状氧化物阴极结构稳定性","authors":"Xu Yang ,&nbsp;Yingfei Li ,&nbsp;Xinyu Li ,&nbsp;Ting Lin ,&nbsp;Weiguang Lin ,&nbsp;Peihua Li ,&nbsp;Dongdong Xiao ,&nbsp;Shurong Wang ,&nbsp;Huilin Pan","doi":"10.1016/j.ensm.2025.104158","DOIUrl":null,"url":null,"abstract":"<div><div>Na-ion batteries (NIBs) have garnered significant attention due to the abundance and low cost of sodium resources, yet the limited capacity and poor stability of cathodes remain bottlenecks for practical use. This study proposes an innovative binary LiF-CaF₂ eutectic molten salt (BEMS) modification strategy, enabling atomic-level uniform selective ion doping and fluoride interface modification of O3-type NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NFM) via a single-step sintering process. This synergistic modification significantly simplifies the phase transition pathway from the O3 to P3 phase during Na⁺ extraction and intercalation, increasing the structural stability of the O3 phase and mitigating structural and interfacial side reactions at high voltage and rates. The modified 2 %BEMS@NFM exhibits higher reversible capacity, excellent rate performance, and stable cycling capability (achieving an 82 % capacity retention after 1000 cycles at 1 C in full cell). Structural analyses reveal that BEMS modification reduces the unit cell volume change during phase transitions, improving interfacial stability. This study provides novel insights and effective methods for developing high-performance and stable layered oxide cathodes for NIBs.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"76 ","pages":"Article 104158"},"PeriodicalIF":18.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary eutectic fluoride salts modification enhancing structural stability of layered oxide cathodes for Na-ion batteries\",\"authors\":\"Xu Yang ,&nbsp;Yingfei Li ,&nbsp;Xinyu Li ,&nbsp;Ting Lin ,&nbsp;Weiguang Lin ,&nbsp;Peihua Li ,&nbsp;Dongdong Xiao ,&nbsp;Shurong Wang ,&nbsp;Huilin Pan\",\"doi\":\"10.1016/j.ensm.2025.104158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Na-ion batteries (NIBs) have garnered significant attention due to the abundance and low cost of sodium resources, yet the limited capacity and poor stability of cathodes remain bottlenecks for practical use. This study proposes an innovative binary LiF-CaF₂ eutectic molten salt (BEMS) modification strategy, enabling atomic-level uniform selective ion doping and fluoride interface modification of O3-type NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NFM) via a single-step sintering process. This synergistic modification significantly simplifies the phase transition pathway from the O3 to P3 phase during Na⁺ extraction and intercalation, increasing the structural stability of the O3 phase and mitigating structural and interfacial side reactions at high voltage and rates. The modified 2 %BEMS@NFM exhibits higher reversible capacity, excellent rate performance, and stable cycling capability (achieving an 82 % capacity retention after 1000 cycles at 1 C in full cell). Structural analyses reveal that BEMS modification reduces the unit cell volume change during phase transitions, improving interfacial stability. This study provides novel insights and effective methods for developing high-performance and stable layered oxide cathodes for NIBs.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"76 \",\"pages\":\"Article 104158\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829725001588\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725001588","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钠离子电池(NIBs)因其丰富的钠资源和低廉的成本而备受关注,但其容量有限和阴极稳定性差仍然是其实际应用的瓶颈。本研究提出了一种创新的二元LiF-CaF₂共晶熔盐(BEMS)改性策略,通过一步烧结工艺实现了o3型NaNi1/3Fe1/3Mn1/3O2 (NFM)的原子级均匀选择性离子掺杂和氟化界面改性。这种协同修饰显著简化了Na⁺在提取和插层过程中从O3相到P3相的相变途径,提高了O3相的结构稳定性,减轻了高电压和高速率下的结构和界面副反应。改性后的2%BEMS@NFM具有更高的可逆容量,优异的倍率性能和稳定的循环能力(在满电池1000次循环后达到82%的容量保留率)。结构分析表明,BEMS修饰减少了相变过程中单体胞的体积变化,提高了界面稳定性。该研究为开发高性能、稳定的nib层状阴极提供了新的见解和有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Binary eutectic fluoride salts modification enhancing structural stability of layered oxide cathodes for Na-ion batteries

Binary eutectic fluoride salts modification enhancing structural stability of layered oxide cathodes for Na-ion batteries

Binary eutectic fluoride salts modification enhancing structural stability of layered oxide cathodes for Na-ion batteries
Na-ion batteries (NIBs) have garnered significant attention due to the abundance and low cost of sodium resources, yet the limited capacity and poor stability of cathodes remain bottlenecks for practical use. This study proposes an innovative binary LiF-CaF₂ eutectic molten salt (BEMS) modification strategy, enabling atomic-level uniform selective ion doping and fluoride interface modification of O3-type NaNi1/3Fe1/3Mn1/3O2 (NFM) via a single-step sintering process. This synergistic modification significantly simplifies the phase transition pathway from the O3 to P3 phase during Na⁺ extraction and intercalation, increasing the structural stability of the O3 phase and mitigating structural and interfacial side reactions at high voltage and rates. The modified 2 %BEMS@NFM exhibits higher reversible capacity, excellent rate performance, and stable cycling capability (achieving an 82 % capacity retention after 1000 cycles at 1 C in full cell). Structural analyses reveal that BEMS modification reduces the unit cell volume change during phase transitions, improving interfacial stability. This study provides novel insights and effective methods for developing high-performance and stable layered oxide cathodes for NIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信