凯撒问题

IF 0.8 1区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE
Francesca Boccuni, Luca Zanetti
{"title":"凯撒问题","authors":"Francesca Boccuni, Luca Zanetti","doi":"10.1093/philmat/nkaf002","DOIUrl":null,"url":null,"abstract":"Hume’s Principle (HP) does not determine the truth values of ‘mixed’ identity statements like ‘$ \\#F $ = Caesar’. This is the Caesar Problem (CP). Still, neologicists such as Hale and Wright argue that (1) HP is a priori, and (2) HP introduces the pure sortal concept Number. We argue that Neologicism faces a Caesar-problem Problem (CPP): if neologicists solve CP by establishing that ‘$ \\#F\\neq $ Caesar’ is true, (1) and (2) cannot be retained simultaneously. We examine various responses neologicists might provide and show that they do not address CPP. We conclude that CP uncovers a fatal tension in Neologicism.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"28 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Caesar-problem Problem\",\"authors\":\"Francesca Boccuni, Luca Zanetti\",\"doi\":\"10.1093/philmat/nkaf002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hume’s Principle (HP) does not determine the truth values of ‘mixed’ identity statements like ‘$ \\\\#F $ = Caesar’. This is the Caesar Problem (CP). Still, neologicists such as Hale and Wright argue that (1) HP is a priori, and (2) HP introduces the pure sortal concept Number. We argue that Neologicism faces a Caesar-problem Problem (CPP): if neologicists solve CP by establishing that ‘$ \\\\#F\\\\neq $ Caesar’ is true, (1) and (2) cannot be retained simultaneously. We examine various responses neologicists might provide and show that they do not address CPP. We conclude that CP uncovers a fatal tension in Neologicism.\",\"PeriodicalId\":49004,\"journal\":{\"name\":\"Philosophia Mathematica\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophia Mathematica\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1093/philmat/nkaf002\",\"RegionNum\":1,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophia Mathematica","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1093/philmat/nkaf002","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

休谟原理(HP)不能决定像“$ \#F $ = Caesar”这样的“混合”身份陈述的真值。这就是凯撒问题(CP)。然而,像Hale和Wright这样的新词学者认为(1)HP是先验的,(2)HP引入了纯粹排序概念Number。我们认为新语学面临一个凯撒问题(Caesar- Problem Problem, CPP):如果新语学家通过建立“$ \#F\neq $ Caesar”为真来解决CPP,则(1)和(2)不能同时保留。我们检查了新词学家可能提供的各种回应,并表明他们没有解决CPP问题。我们的结论是,CP揭示了新词中一种致命的张力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Caesar-problem Problem
Hume’s Principle (HP) does not determine the truth values of ‘mixed’ identity statements like ‘$ \#F $ = Caesar’. This is the Caesar Problem (CP). Still, neologicists such as Hale and Wright argue that (1) HP is a priori, and (2) HP introduces the pure sortal concept Number. We argue that Neologicism faces a Caesar-problem Problem (CPP): if neologicists solve CP by establishing that ‘$ \#F\neq $ Caesar’ is true, (1) and (2) cannot be retained simultaneously. We examine various responses neologicists might provide and show that they do not address CPP. We conclude that CP uncovers a fatal tension in Neologicism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Philosophia Mathematica
Philosophia Mathematica HISTORY & PHILOSOPHY OF SCIENCE-
CiteScore
1.70
自引率
9.10%
发文量
26
审稿时长
>12 weeks
期刊介绍: Philosophia Mathematica is the only journal in the world devoted specifically to philosophy of mathematics. The journal publishes peer-reviewed new work in philosophy of mathematics, the application of mathematics, and computing. In addition to main articles, sometimes grouped on a single theme, there are shorter discussion notes, letters, and book reviews. The journal is published online-only, with three issues published per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信