Weilin Wei, Kui Lin-Wang, Guosong Chen, Richard V Espley, Andrew C Allan, Beibei Cao, Mengfan Qin, Shoufeng Sha, Juncai Li, Runze Wang, Jiaming Li, Jun Wu
{"title":"抑制梨花青素生物合成的kanadi样转录因子的表征","authors":"Weilin Wei, Kui Lin-Wang, Guosong Chen, Richard V Espley, Andrew C Allan, Beibei Cao, Mengfan Qin, Shoufeng Sha, Juncai Li, Runze Wang, Jiaming Li, Jun Wu","doi":"10.1093/hr/uhaf071","DOIUrl":null,"url":null,"abstract":"Anthocyanins are important specialized fruit metabolites and major pigments, whose abundance depends on co-regulation of activators and repressors, primarily transcription factors (TFs) of the MYB family. Herein, a KANADI-like TF PuKAN4 was characterized in pear. This TF could be transcriptionally up-regulated by the anthocyanin-related R2R3-MYBs PuMYB10/PuMYB114 and exhibited high expression within red-skinned pears. Interestingly, PuKAN4 repressed anthocyanin biosynthesis in transiently overexpressed pear fruit, and stable transformation in pear calli and tobacco plants. The PuKAN4 had a conserved EAR repression domain in C-terminal, while the repression function of PuKAN4 could be offset by a transcription activation domain VP64. The dual luciferase analysis proved that PuMYB114/PuMYB10 up-regulated expression of PuKAN4. Furthermore, the PuKAN4 could physically interact with PuMYB10/PuMYB114 and did not affect the combination of MYB10/MYB114-bHLH3, as demonstrated by Y2H, pull-down and firefly luciferase complementation. Thus, the PuKAN4 should play the role of active repressor, the formation of PuKAN4-PuMYB10/PuMYB114-PubHLH3 complex inhibited pear anthocyanin biosynthesis. Our findings unveiled an activator-and-repressor feedback loop between PuMYB114/PuMYB10 and PuKAN4, which possibly balance biosynthesis activity and prevent over-accumulation of phenylpropanoids.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"13 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of a KANADI-like transcription factor that suppresses pear anthocyanin biosynthesis\",\"authors\":\"Weilin Wei, Kui Lin-Wang, Guosong Chen, Richard V Espley, Andrew C Allan, Beibei Cao, Mengfan Qin, Shoufeng Sha, Juncai Li, Runze Wang, Jiaming Li, Jun Wu\",\"doi\":\"10.1093/hr/uhaf071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anthocyanins are important specialized fruit metabolites and major pigments, whose abundance depends on co-regulation of activators and repressors, primarily transcription factors (TFs) of the MYB family. Herein, a KANADI-like TF PuKAN4 was characterized in pear. This TF could be transcriptionally up-regulated by the anthocyanin-related R2R3-MYBs PuMYB10/PuMYB114 and exhibited high expression within red-skinned pears. Interestingly, PuKAN4 repressed anthocyanin biosynthesis in transiently overexpressed pear fruit, and stable transformation in pear calli and tobacco plants. The PuKAN4 had a conserved EAR repression domain in C-terminal, while the repression function of PuKAN4 could be offset by a transcription activation domain VP64. The dual luciferase analysis proved that PuMYB114/PuMYB10 up-regulated expression of PuKAN4. Furthermore, the PuKAN4 could physically interact with PuMYB10/PuMYB114 and did not affect the combination of MYB10/MYB114-bHLH3, as demonstrated by Y2H, pull-down and firefly luciferase complementation. Thus, the PuKAN4 should play the role of active repressor, the formation of PuKAN4-PuMYB10/PuMYB114-PubHLH3 complex inhibited pear anthocyanin biosynthesis. Our findings unveiled an activator-and-repressor feedback loop between PuMYB114/PuMYB10 and PuKAN4, which possibly balance biosynthesis activity and prevent over-accumulation of phenylpropanoids.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhaf071\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf071","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Characterization of a KANADI-like transcription factor that suppresses pear anthocyanin biosynthesis
Anthocyanins are important specialized fruit metabolites and major pigments, whose abundance depends on co-regulation of activators and repressors, primarily transcription factors (TFs) of the MYB family. Herein, a KANADI-like TF PuKAN4 was characterized in pear. This TF could be transcriptionally up-regulated by the anthocyanin-related R2R3-MYBs PuMYB10/PuMYB114 and exhibited high expression within red-skinned pears. Interestingly, PuKAN4 repressed anthocyanin biosynthesis in transiently overexpressed pear fruit, and stable transformation in pear calli and tobacco plants. The PuKAN4 had a conserved EAR repression domain in C-terminal, while the repression function of PuKAN4 could be offset by a transcription activation domain VP64. The dual luciferase analysis proved that PuMYB114/PuMYB10 up-regulated expression of PuKAN4. Furthermore, the PuKAN4 could physically interact with PuMYB10/PuMYB114 and did not affect the combination of MYB10/MYB114-bHLH3, as demonstrated by Y2H, pull-down and firefly luciferase complementation. Thus, the PuKAN4 should play the role of active repressor, the formation of PuKAN4-PuMYB10/PuMYB114-PubHLH3 complex inhibited pear anthocyanin biosynthesis. Our findings unveiled an activator-and-repressor feedback loop between PuMYB114/PuMYB10 and PuKAN4, which possibly balance biosynthesis activity and prevent over-accumulation of phenylpropanoids.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.