将铁氧化还原蛋白- nadp +还原酶拴在光系统I上促进光合作用循环电子转移

Thomas Z Emrich-Mills, Matthew S Proctor, Gustaf E Degen, Philip J Jackson, Katherine H Richardson, Frederick R Hawkings, Felix Buchert, Andrew Hitchcock, C Neil Hunter, Luke C M Mackinder, Michael Hippler, Matthew P Johnson
{"title":"将铁氧化还原蛋白- nadp +还原酶拴在光系统I上促进光合作用循环电子转移","authors":"Thomas Z Emrich-Mills, Matthew S Proctor, Gustaf E Degen, Philip J Jackson, Katherine H Richardson, Frederick R Hawkings, Felix Buchert, Andrew Hitchcock, C Neil Hunter, Luke C M Mackinder, Michael Hippler, Matthew P Johnson","doi":"10.1093/plcell/koaf042","DOIUrl":null,"url":null,"abstract":"Fixing CO2 via photosynthesis requires ATP and NADPH, which can be generated through linear electron transfer (LET). However, depending on the environmental conditions, additional ATP may be required to fix CO2, which can be generated by cyclic electron transfer (CET). How the balance between LET and CET is determined remains largely unknown. Ferredoxin-NADP+ reductase (FNR) may act as the switch between LET and CET, channelling photosynthetic electrons to LET when it is bound to photosystem I (PSI) or to CET when it is bound to cytochrome b6f. The essential role of FNR in LET precludes the use of a direct gene knock-out to test this hypothesis. Nevertheless, we circumvented this problem using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing in Chlamydomonas reinhardtii. Through this approach, we created a chimeric form of FNR tethered to PSI via PSAF. Chimeric FNR mutants exhibited impaired photosynthetic growth and LET along with enhanced PSI acceptor side limitation relative to the wild type due to slower NADPH reduction. However, the chimeric FNR mutants also showed enhanced ΔpH production and NPQ resulting from increased CET. Overall, our results suggest that rather than promoting LET, tethering FNR to PSI promotes CET at the expense of LET and CO2 fixation.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tethering ferredoxin-NADP+ reductase to photosystem I promotes photosynthetic cyclic electron transfer\",\"authors\":\"Thomas Z Emrich-Mills, Matthew S Proctor, Gustaf E Degen, Philip J Jackson, Katherine H Richardson, Frederick R Hawkings, Felix Buchert, Andrew Hitchcock, C Neil Hunter, Luke C M Mackinder, Michael Hippler, Matthew P Johnson\",\"doi\":\"10.1093/plcell/koaf042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fixing CO2 via photosynthesis requires ATP and NADPH, which can be generated through linear electron transfer (LET). However, depending on the environmental conditions, additional ATP may be required to fix CO2, which can be generated by cyclic electron transfer (CET). How the balance between LET and CET is determined remains largely unknown. Ferredoxin-NADP+ reductase (FNR) may act as the switch between LET and CET, channelling photosynthetic electrons to LET when it is bound to photosystem I (PSI) or to CET when it is bound to cytochrome b6f. The essential role of FNR in LET precludes the use of a direct gene knock-out to test this hypothesis. Nevertheless, we circumvented this problem using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing in Chlamydomonas reinhardtii. Through this approach, we created a chimeric form of FNR tethered to PSI via PSAF. Chimeric FNR mutants exhibited impaired photosynthetic growth and LET along with enhanced PSI acceptor side limitation relative to the wild type due to slower NADPH reduction. However, the chimeric FNR mutants also showed enhanced ΔpH production and NPQ resulting from increased CET. Overall, our results suggest that rather than promoting LET, tethering FNR to PSI promotes CET at the expense of LET and CO2 fixation.\",\"PeriodicalId\":501012,\"journal\":{\"name\":\"The Plant Cell\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koaf042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过光合作用固定CO2需要ATP和NADPH,这可以通过线性电子转移(LET)产生。然而,根据环境条件的不同,可能需要额外的ATP来固定二氧化碳,这可以通过循环电子转移(CET)产生。LET和CET之间的平衡是如何决定的,这在很大程度上仍然是未知的。铁氧化还原蛋白- nadp +还原酶(FNR)可能作为LET和CET之间的开关,当LET与光系统I (PSI)结合时,将光合电子引导到LET,当它与细胞色素b6f结合时,将光合电子引导到CET。FNR在LET中的重要作用排除了使用直接基因敲除来验证这一假设的可能性。然而,我们在莱茵衣藻中使用集群规则间隔短回文重复序列(CRISPR)/CRISPR相关核酸酶9 (Cas9)介导的基因编辑绕过了这个问题。通过这种方法,我们创造了一种嵌合形式的FNR,通过PSAF与PSI相连。与野生型相比,嵌合FNR突变体由于NADPH还原较慢,表现出光合生长和LET受损以及PSI受体侧限制增强。然而,嵌合FNR突变体也显示出由于CET增加而增加的ΔpH产量和NPQ。总的来说,我们的研究结果表明,将FNR与PSI捆绑在一起,以牺牲LET和二氧化碳固定为代价,而不是促进LET。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tethering ferredoxin-NADP+ reductase to photosystem I promotes photosynthetic cyclic electron transfer
Fixing CO2 via photosynthesis requires ATP and NADPH, which can be generated through linear electron transfer (LET). However, depending on the environmental conditions, additional ATP may be required to fix CO2, which can be generated by cyclic electron transfer (CET). How the balance between LET and CET is determined remains largely unknown. Ferredoxin-NADP+ reductase (FNR) may act as the switch between LET and CET, channelling photosynthetic electrons to LET when it is bound to photosystem I (PSI) or to CET when it is bound to cytochrome b6f. The essential role of FNR in LET precludes the use of a direct gene knock-out to test this hypothesis. Nevertheless, we circumvented this problem using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing in Chlamydomonas reinhardtii. Through this approach, we created a chimeric form of FNR tethered to PSI via PSAF. Chimeric FNR mutants exhibited impaired photosynthetic growth and LET along with enhanced PSI acceptor side limitation relative to the wild type due to slower NADPH reduction. However, the chimeric FNR mutants also showed enhanced ΔpH production and NPQ resulting from increased CET. Overall, our results suggest that rather than promoting LET, tethering FNR to PSI promotes CET at the expense of LET and CO2 fixation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信