IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yomna Mohamed, Ahmed Elghadban, Hei I Lei, Amelie Andrea Shih, Po-Heng Lee
{"title":"Quantum machine learning regression optimisation for full-scale sewage sludge anaerobic digestion","authors":"Yomna Mohamed, Ahmed Elghadban, Hei I Lei, Amelie Andrea Shih, Po-Heng Lee","doi":"10.1038/s41545-025-00440-y","DOIUrl":null,"url":null,"abstract":"<p>Anaerobic digestion (AD) is a crucial bioenergy source widely applied in wastewater treatment. However, its efficiency improvement is hindered by complex microbial communities and sensitivity to feedstock properties. We, thus, propose a hybrid quantum-classical machine learning (Q-CML) regression algorithm using a quantum circuit learning (QCL) strategy. Combining a variational quantum circuit with a classical optimiser, this approach predicts biogas production from operational data of 18 full-scale mesophilic AD sites in the UK. Tailored for noisy intermediate-scale quantum (NISQ) devices, the low-depth QCL model outperforms conventional regression methods (<i>R</i>²: 0.53) and matches the performance of a classical multi-layer perceptron (MLP) regressor (<i>R</i>²: 0.959) with significantly fewer parameters and better scalability. Comparative analysis highlights the advantages of quantum superposition and entanglement in capturing intricate correlations in AD data. This study positions Q-CML as a cutting-edge solution for optimising AD processes, boosting energy recovery, and driving the circular economy.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"183 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00440-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

厌氧消化(AD)是广泛应用于废水处理的重要生物能源。然而,复杂的微生物群落和对原料特性的敏感性阻碍了其效率的提高。因此,我们提出了一种使用量子电路学习(QCL)策略的混合量子-经典机器学习(Q-CML)回归算法。这种方法将变异量子电路与经典优化器相结合,从英国 18 个全规模中温厌氧消化(AD)基地的运行数据中预测沼气产量。低深度 QCL 模型专为噪声中等规模量子(NISQ)设备量身定制,其性能优于传统回归方法(R²:0.53),并与经典多层感知器(MLP)回归器的性能(R²:0.959)相当,但参数明显更少,可扩展性更好。对比分析凸显了量子叠加和纠缠在捕捉 AD 数据中错综复杂的相关性方面的优势。这项研究将 Q-CML 定位为优化厌氧消化过程、促进能源回收和推动循环经济的尖端解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum machine learning regression optimisation for full-scale sewage sludge anaerobic digestion

Quantum machine learning regression optimisation for full-scale sewage sludge anaerobic digestion

Anaerobic digestion (AD) is a crucial bioenergy source widely applied in wastewater treatment. However, its efficiency improvement is hindered by complex microbial communities and sensitivity to feedstock properties. We, thus, propose a hybrid quantum-classical machine learning (Q-CML) regression algorithm using a quantum circuit learning (QCL) strategy. Combining a variational quantum circuit with a classical optimiser, this approach predicts biogas production from operational data of 18 full-scale mesophilic AD sites in the UK. Tailored for noisy intermediate-scale quantum (NISQ) devices, the low-depth QCL model outperforms conventional regression methods (R²: 0.53) and matches the performance of a classical multi-layer perceptron (MLP) regressor (R²: 0.959) with significantly fewer parameters and better scalability. Comparative analysis highlights the advantages of quantum superposition and entanglement in capturing intricate correlations in AD data. This study positions Q-CML as a cutting-edge solution for optimising AD processes, boosting energy recovery, and driving the circular economy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信