IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
King Chun Lai, Patricia Poths, Sebastian Matera, Christoph Scheurer, Karsten Reuter
{"title":"Automatic Process Exploration through Machine Learning Assisted Transition State Searches","authors":"King Chun Lai, Patricia Poths, Sebastian Matera, Christoph Scheurer, Karsten Reuter","doi":"10.1103/physrevlett.134.096201","DOIUrl":null,"url":null,"abstract":"We present an efficient automatic process explorer (APE) framework to overcome the reliance on human intuition to empirically establish relevant elementary processes of a given system, e.g., in prevalent kinetic Monte Carlo (kMC) simulations based on fixed process lists. Use of a fuzzy machine learning classification algorithm minimizes redundancy in the transition-state searches by driving them toward hitherto unexplored local atomic environments. APE application to island diffusion at a Pd(100) surface immediately reveals a large number of, up to now, disregarded low-barrier collective processes that lead to a significant increase in the kMC-determined island diffusivity as compared to classic surface hopping and exchange diffusion mechanisms. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"59 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.096201","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种高效的自动过程探索器(APE)框架,以克服在基于固定过程列表的盛行动力学蒙特卡罗(kMC)模拟中,依赖人类直觉来根据经验确定给定系统的相关基本过程的问题。使用模糊机器学习分类算法可将过渡态搜索的冗余度降到最低,使其转向迄今为止尚未探索过的局部原子环境。将 APE 应用于 Pd(100) 表面的孤岛扩散,立即发现了大量迄今为止被忽视的低势垒集体过程,与经典的表面跳跃和交换扩散机制相比,这些过程导致 kMC 确定的孤岛扩散率显著增加。 美国物理学会出版 2025
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Process Exploration through Machine Learning Assisted Transition State Searches
We present an efficient automatic process explorer (APE) framework to overcome the reliance on human intuition to empirically establish relevant elementary processes of a given system, e.g., in prevalent kinetic Monte Carlo (kMC) simulations based on fixed process lists. Use of a fuzzy machine learning classification algorithm minimizes redundancy in the transition-state searches by driving them toward hitherto unexplored local atomic environments. APE application to island diffusion at a Pd(100) surface immediately reveals a large number of, up to now, disregarded low-barrier collective processes that lead to a significant increase in the kMC-determined island diffusivity as compared to classic surface hopping and exchange diffusion mechanisms. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信