利用光子自旋解耦的超表面实现透明流场的非侵入性和全二维定量可视化

IF 20.6 Q1 OPTICS
Qingbin Fan, Peicheng Lin, Le Tan, Chunyu Huang, Feng Yan, Yanqing Lu, Ting Xu
{"title":"利用光子自旋解耦的超表面实现透明流场的非侵入性和全二维定量可视化","authors":"Qingbin Fan, Peicheng Lin, Le Tan, Chunyu Huang, Feng Yan, Yanqing Lu, Ting Xu","doi":"10.1038/s41377-025-01793-2","DOIUrl":null,"url":null,"abstract":"<p>Transparent flow field visualization techniques play a critical role in engineering and scientific applications. They provide a clear and intuitive means to understand fluid dynamics and its complex phenomena, such as laminar flow, turbulence, and vortices. However, achieving fully two-dimensional quantitative visualization of transparent flow fields under non-invasive conditions remains a significant challenge. Here, we present an approach for achieving flow field visualization by harnessing the synergistic effects of a dielectric metasurface array endowed with photonic spin-decoupled capability. This approach enables the simultaneous acquisition of light-field images containing flow field information in two orthogonal dimensions, which allows for the real-time and quantitative derivation of multiple physical parameters. As a proof-of-concept, we experimentally demonstrate the applicability of the proposed visualization technique to various scenarios, including temperature field mapping, gas leak detection, visualization of various fluid physical phenomena, and 3D morphological reconstruction of transparent phase objects. This technique not only establishes an exceptional platform for advancing research in fluid physics, but also exhibits significant potential for broad applications in industrial design and vision.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"29 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-invasive and fully two-dimensional quantitative visualization of transparent flow fields enabled by photonic spin-decoupled metasurfaces\",\"authors\":\"Qingbin Fan, Peicheng Lin, Le Tan, Chunyu Huang, Feng Yan, Yanqing Lu, Ting Xu\",\"doi\":\"10.1038/s41377-025-01793-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transparent flow field visualization techniques play a critical role in engineering and scientific applications. They provide a clear and intuitive means to understand fluid dynamics and its complex phenomena, such as laminar flow, turbulence, and vortices. However, achieving fully two-dimensional quantitative visualization of transparent flow fields under non-invasive conditions remains a significant challenge. Here, we present an approach for achieving flow field visualization by harnessing the synergistic effects of a dielectric metasurface array endowed with photonic spin-decoupled capability. This approach enables the simultaneous acquisition of light-field images containing flow field information in two orthogonal dimensions, which allows for the real-time and quantitative derivation of multiple physical parameters. As a proof-of-concept, we experimentally demonstrate the applicability of the proposed visualization technique to various scenarios, including temperature field mapping, gas leak detection, visualization of various fluid physical phenomena, and 3D morphological reconstruction of transparent phase objects. This technique not only establishes an exceptional platform for advancing research in fluid physics, but also exhibits significant potential for broad applications in industrial design and vision.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01793-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01793-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

透明流场可视化技术在工程和科学应用中起着至关重要的作用。它们提供了一种清晰直观的方法来理解流体动力学及其复杂的现象,如层流、湍流和涡旋。然而,在无创条件下实现透明流场的全二维定量可视化仍然是一个重大挑战。在这里,我们提出了一种利用具有光子自旋去耦能力的介电超表面阵列的协同效应来实现流场可视化的方法。这种方法可以同时获取包含两个正交维度流场信息的光场图像,从而可以实时定量地推导多个物理参数。作为概念验证,我们通过实验证明了所提出的可视化技术在各种场景中的适用性,包括温度场映射、气体泄漏检测、各种流体物理现象的可视化以及透明相物体的三维形态重建。该技术不仅为推进流体物理研究建立了一个特殊的平台,而且在工业设计和视觉方面也显示出广泛应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-invasive and fully two-dimensional quantitative visualization of transparent flow fields enabled by photonic spin-decoupled metasurfaces

Non-invasive and fully two-dimensional quantitative visualization of transparent flow fields enabled by photonic spin-decoupled metasurfaces

Transparent flow field visualization techniques play a critical role in engineering and scientific applications. They provide a clear and intuitive means to understand fluid dynamics and its complex phenomena, such as laminar flow, turbulence, and vortices. However, achieving fully two-dimensional quantitative visualization of transparent flow fields under non-invasive conditions remains a significant challenge. Here, we present an approach for achieving flow field visualization by harnessing the synergistic effects of a dielectric metasurface array endowed with photonic spin-decoupled capability. This approach enables the simultaneous acquisition of light-field images containing flow field information in two orthogonal dimensions, which allows for the real-time and quantitative derivation of multiple physical parameters. As a proof-of-concept, we experimentally demonstrate the applicability of the proposed visualization technique to various scenarios, including temperature field mapping, gas leak detection, visualization of various fluid physical phenomena, and 3D morphological reconstruction of transparent phase objects. This technique not only establishes an exceptional platform for advancing research in fluid physics, but also exhibits significant potential for broad applications in industrial design and vision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信