用于大面积模板光采集的范德华异质结构阵列的无掩模合成

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-05 DOI:10.1002/smll.202400943
Matteo Gardella, Giorgio Zambito, Giulio Ferrando, Lorenzo Ferrari Barusso, Rajesh Chennuboina, Luca Repetto, Matteo Barelli, Maria Caterina Giordano, Francesco Buatier de Mongeot
{"title":"用于大面积模板光采集的范德华异质结构阵列的无掩模合成","authors":"Matteo Gardella,&nbsp;Giorgio Zambito,&nbsp;Giulio Ferrando,&nbsp;Lorenzo Ferrari Barusso,&nbsp;Rajesh Chennuboina,&nbsp;Luca Repetto,&nbsp;Matteo Barelli,&nbsp;Maria Caterina Giordano,&nbsp;Francesco Buatier de Mongeot","doi":"10.1002/smll.202400943","DOIUrl":null,"url":null,"abstract":"<p>Large area stacking of van der Waals heterostructure arrays, based on 2D Transition Metal Dichalcogenide semiconductors (TMDs), is achieved by an original physical deposition process utilizing Ion Beam Sputtering. Silica substrates endowed with periodically faceted nanoridges are fabricated using interference lithography and serve as templates for maskless deposition of TMD at glancing angles. This approach enables the creation of laterally confined few-layer WS<sub>2</sub> nanostripe arrays coated by MoS<sub>2</sub> films. The subwavelength periodicity of the high refractive index WS<sub>2</sub> nanostripes facilitates the excitation of photonic anomalies at the onset of the evanescence condition. As a consequence, light flow is effectively steered and trapped within the 2D-TMDs heterostructures and the supporting dielectric slab. Photon harvesting is engineered in the flat optics regime by optimizing the thickness of the WS<sub>2</sub> nanostripes, which serve as optical sensitizers. This innovative design achieves a resonant enhancement of optical absorption, up to a remarkable factor of 450%, when compared to a reference flat MoS<sub>2</sub>/WS<sub>2</sub> heterostructure of equivalent thickness. This result highlights the promising potential of the novel 2D-TMD platforms for scalable real-world applications of van der Waals heterostructures, targeting photoconversion, photocatalysis, and energy storage.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 15","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202400943","citationCount":"0","resultStr":"{\"title\":\"Maskless Synthesis of van der Waals Heterostructure Arrays Engineered for Light Harvesting on Large Area Templates\",\"authors\":\"Matteo Gardella,&nbsp;Giorgio Zambito,&nbsp;Giulio Ferrando,&nbsp;Lorenzo Ferrari Barusso,&nbsp;Rajesh Chennuboina,&nbsp;Luca Repetto,&nbsp;Matteo Barelli,&nbsp;Maria Caterina Giordano,&nbsp;Francesco Buatier de Mongeot\",\"doi\":\"10.1002/smll.202400943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large area stacking of van der Waals heterostructure arrays, based on 2D Transition Metal Dichalcogenide semiconductors (TMDs), is achieved by an original physical deposition process utilizing Ion Beam Sputtering. Silica substrates endowed with periodically faceted nanoridges are fabricated using interference lithography and serve as templates for maskless deposition of TMD at glancing angles. This approach enables the creation of laterally confined few-layer WS<sub>2</sub> nanostripe arrays coated by MoS<sub>2</sub> films. The subwavelength periodicity of the high refractive index WS<sub>2</sub> nanostripes facilitates the excitation of photonic anomalies at the onset of the evanescence condition. As a consequence, light flow is effectively steered and trapped within the 2D-TMDs heterostructures and the supporting dielectric slab. Photon harvesting is engineered in the flat optics regime by optimizing the thickness of the WS<sub>2</sub> nanostripes, which serve as optical sensitizers. This innovative design achieves a resonant enhancement of optical absorption, up to a remarkable factor of 450%, when compared to a reference flat MoS<sub>2</sub>/WS<sub>2</sub> heterostructure of equivalent thickness. This result highlights the promising potential of the novel 2D-TMD platforms for scalable real-world applications of van der Waals heterostructures, targeting photoconversion, photocatalysis, and energy storage.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 15\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smll.202400943\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202400943\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202400943","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用离子束溅射的物理沉积工艺,在二维过渡金属二硫化物半导体(TMDs)上实现了范德华异质结构阵列的大面积堆叠。采用干涉光刻技术制备了具有周期性多面纳米脊的二氧化硅衬底,并作为在掠射角无掩膜沉积TMD的模板。这种方法可以创建由二硫化钼薄膜包裹的横向受限的少层WS2纳米条纹阵列。高折射率WS2纳米条纹的亚波长周期性有利于在倏逝条件开始时激发光子异常。因此,光流被有效地引导并困在2d - tmd异质结构和支撑介质板内。通过优化WS2纳米条纹的厚度,在平面光学条件下进行光子捕获,WS2纳米条纹作为光学增敏剂。这种创新的设计实现了光学吸收的共振增强,与同等厚度的参考平面MoS2/WS2异质结构相比,达到了显著的450%。这一结果突出了新型2D-TMD平台在可扩展的范德华异质结构的实际应用中的巨大潜力,目标是光转化、光催化和能量存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Maskless Synthesis of van der Waals Heterostructure Arrays Engineered for Light Harvesting on Large Area Templates

Maskless Synthesis of van der Waals Heterostructure Arrays Engineered for Light Harvesting on Large Area Templates

Maskless Synthesis of van der Waals Heterostructure Arrays Engineered for Light Harvesting on Large Area Templates

Large area stacking of van der Waals heterostructure arrays, based on 2D Transition Metal Dichalcogenide semiconductors (TMDs), is achieved by an original physical deposition process utilizing Ion Beam Sputtering. Silica substrates endowed with periodically faceted nanoridges are fabricated using interference lithography and serve as templates for maskless deposition of TMD at glancing angles. This approach enables the creation of laterally confined few-layer WS2 nanostripe arrays coated by MoS2 films. The subwavelength periodicity of the high refractive index WS2 nanostripes facilitates the excitation of photonic anomalies at the onset of the evanescence condition. As a consequence, light flow is effectively steered and trapped within the 2D-TMDs heterostructures and the supporting dielectric slab. Photon harvesting is engineered in the flat optics regime by optimizing the thickness of the WS2 nanostripes, which serve as optical sensitizers. This innovative design achieves a resonant enhancement of optical absorption, up to a remarkable factor of 450%, when compared to a reference flat MoS2/WS2 heterostructure of equivalent thickness. This result highlights the promising potential of the novel 2D-TMD platforms for scalable real-world applications of van der Waals heterostructures, targeting photoconversion, photocatalysis, and energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信