David S. G. Holmgård, Libin Zhou, Jesper L. Kristensen, Anders A. Jensen
{"title":"异聚体烟碱乙酰胆碱受体上正位配体结合特性的非均相动力学起源","authors":"David S. G. Holmgård, Libin Zhou, Jesper L. Kristensen, Anders A. Jensen","doi":"10.1021/acs.jmedchem.5c00089","DOIUrl":null,"url":null,"abstract":"A plethora of agonists and competitive antagonists have been developed to explore the therapeutic potential in neuronal nicotinic acetylcholine receptors (nAChRs). Based on equilibrium and kinetic [<sup>3</sup>H]epibatidine binding studies, we report that the kinetic fingerprints of [<sup>3</sup>H]epibatidine at five heteromeric αβ nAChRs and of seven classical agonists at α4β2 and α3β4 nAChRs differ substantially. While this diversity depends on both the agonist and receptor subtype, the overall pattern of kinetic determinants emerging from this profiling is complex. The dramatically different binding kinetics displayed by two alkaloids and competitive antagonists, (+)-DHβE and (+)-cocculine, at the α4β2 nAChR further exemplify how dissimilar kinetics can underlie very comparable pharmacological properties exhibited by close structural analogs. Thus, our findings elucidate the heterogeneous kinetic basis for orthosteric ligand binding to αβ nAChRs and emphasize how the binding affinities, selectivity profiles, and structure–activity relationships of these ligands are rooted in their kinetic traits at the receptors.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"1 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Heterogeneous Kinetic Origins of the Binding Properties of Orthosteric Ligands at Heteromeric Nicotinic Acetylcholine Receptors\",\"authors\":\"David S. G. Holmgård, Libin Zhou, Jesper L. Kristensen, Anders A. Jensen\",\"doi\":\"10.1021/acs.jmedchem.5c00089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A plethora of agonists and competitive antagonists have been developed to explore the therapeutic potential in neuronal nicotinic acetylcholine receptors (nAChRs). Based on equilibrium and kinetic [<sup>3</sup>H]epibatidine binding studies, we report that the kinetic fingerprints of [<sup>3</sup>H]epibatidine at five heteromeric αβ nAChRs and of seven classical agonists at α4β2 and α3β4 nAChRs differ substantially. While this diversity depends on both the agonist and receptor subtype, the overall pattern of kinetic determinants emerging from this profiling is complex. The dramatically different binding kinetics displayed by two alkaloids and competitive antagonists, (+)-DHβE and (+)-cocculine, at the α4β2 nAChR further exemplify how dissimilar kinetics can underlie very comparable pharmacological properties exhibited by close structural analogs. Thus, our findings elucidate the heterogeneous kinetic basis for orthosteric ligand binding to αβ nAChRs and emphasize how the binding affinities, selectivity profiles, and structure–activity relationships of these ligands are rooted in their kinetic traits at the receptors.\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.5c00089\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.5c00089","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
The Heterogeneous Kinetic Origins of the Binding Properties of Orthosteric Ligands at Heteromeric Nicotinic Acetylcholine Receptors
A plethora of agonists and competitive antagonists have been developed to explore the therapeutic potential in neuronal nicotinic acetylcholine receptors (nAChRs). Based on equilibrium and kinetic [3H]epibatidine binding studies, we report that the kinetic fingerprints of [3H]epibatidine at five heteromeric αβ nAChRs and of seven classical agonists at α4β2 and α3β4 nAChRs differ substantially. While this diversity depends on both the agonist and receptor subtype, the overall pattern of kinetic determinants emerging from this profiling is complex. The dramatically different binding kinetics displayed by two alkaloids and competitive antagonists, (+)-DHβE and (+)-cocculine, at the α4β2 nAChR further exemplify how dissimilar kinetics can underlie very comparable pharmacological properties exhibited by close structural analogs. Thus, our findings elucidate the heterogeneous kinetic basis for orthosteric ligand binding to αβ nAChRs and emphasize how the binding affinities, selectivity profiles, and structure–activity relationships of these ligands are rooted in their kinetic traits at the receptors.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.