{"title":"探索医用化学沉淀硅酸锶颗粒的加工-结构-性能关系。","authors":"Yun-Ru Huang and Shinn-Jyh Ding","doi":"10.1039/D4TB02656J","DOIUrl":null,"url":null,"abstract":"<p >Bone regeneration in the presence of osteoporosis presents a significant challenge in dental and orthopedic surgery. To tackle this issue, researchers have developed strontium-containing biomaterials. However, preventing bacterial infection is also crucial for successful surgical treatment. In this study, we delved deep into the processing to tailor the composition and structure of new strontium silicates with unique properties to address this challenge. We used chemical precipitation to prepare various strontium silicate particles using varying ammonia concentrations and Sr/Si precursor ratios. The L929 cytotoxicity, differentiation of human mesenchymal stem cells (hMSCs), biological function of RAW 264.7 macrophages, and antibacterial activity against <em>E. coli</em> and <em>S. aureus</em> were evaluated. As a result, higher ammonia concentration led to the formation of SrSiO<small><sub>3</sub></small> and Sr<small><sub>2</sub></small>SiO<small><sub>4</sub></small> particles with smaller sizes and higher Sr/Si ratios. These particles exhibited increased antibacterial efficacy and radiopacity, promoting cell viability and osteogenic activity of hMSCs and modulating M1/M2 macrophage polarization. In conclusion, the developed strontium silicate demonstrated superior antibacterial activity, exceptional osteogenic properties, and clear visibility during procedures, making it a promising material for bone regeneration and osteoporosis treatment.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 12","pages":" 3990-4005"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring processing–structure–property relationships of chemically precipitated strontium silicate particles for medical applications†\",\"authors\":\"Yun-Ru Huang and Shinn-Jyh Ding\",\"doi\":\"10.1039/D4TB02656J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Bone regeneration in the presence of osteoporosis presents a significant challenge in dental and orthopedic surgery. To tackle this issue, researchers have developed strontium-containing biomaterials. However, preventing bacterial infection is also crucial for successful surgical treatment. In this study, we delved deep into the processing to tailor the composition and structure of new strontium silicates with unique properties to address this challenge. We used chemical precipitation to prepare various strontium silicate particles using varying ammonia concentrations and Sr/Si precursor ratios. The L929 cytotoxicity, differentiation of human mesenchymal stem cells (hMSCs), biological function of RAW 264.7 macrophages, and antibacterial activity against <em>E. coli</em> and <em>S. aureus</em> were evaluated. As a result, higher ammonia concentration led to the formation of SrSiO<small><sub>3</sub></small> and Sr<small><sub>2</sub></small>SiO<small><sub>4</sub></small> particles with smaller sizes and higher Sr/Si ratios. These particles exhibited increased antibacterial efficacy and radiopacity, promoting cell viability and osteogenic activity of hMSCs and modulating M1/M2 macrophage polarization. In conclusion, the developed strontium silicate demonstrated superior antibacterial activity, exceptional osteogenic properties, and clear visibility during procedures, making it a promising material for bone regeneration and osteoporosis treatment.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 12\",\"pages\":\" 3990-4005\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02656j\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02656j","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Exploring processing–structure–property relationships of chemically precipitated strontium silicate particles for medical applications†
Bone regeneration in the presence of osteoporosis presents a significant challenge in dental and orthopedic surgery. To tackle this issue, researchers have developed strontium-containing biomaterials. However, preventing bacterial infection is also crucial for successful surgical treatment. In this study, we delved deep into the processing to tailor the composition and structure of new strontium silicates with unique properties to address this challenge. We used chemical precipitation to prepare various strontium silicate particles using varying ammonia concentrations and Sr/Si precursor ratios. The L929 cytotoxicity, differentiation of human mesenchymal stem cells (hMSCs), biological function of RAW 264.7 macrophages, and antibacterial activity against E. coli and S. aureus were evaluated. As a result, higher ammonia concentration led to the formation of SrSiO3 and Sr2SiO4 particles with smaller sizes and higher Sr/Si ratios. These particles exhibited increased antibacterial efficacy and radiopacity, promoting cell viability and osteogenic activity of hMSCs and modulating M1/M2 macrophage polarization. In conclusion, the developed strontium silicate demonstrated superior antibacterial activity, exceptional osteogenic properties, and clear visibility during procedures, making it a promising material for bone regeneration and osteoporosis treatment.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices