定量脑电图可提高急性缺血性脑卒中出院后6个月预后的预测价值。

Haifeng Mao, Liwei Liu, Peiyi Lin, Xinran Meng, Timothy H Rainer, Qianyi Wu
{"title":"定量脑电图可提高急性缺血性脑卒中出院后6个月预后的预测价值。","authors":"Haifeng Mao, Liwei Liu, Peiyi Lin, Xinran Meng, Timothy H Rainer, Qianyi Wu","doi":"10.1177/15500594251323119","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background:</i> As a leading cause of severe morbidity, acute ischemic stroke (AIS) necessitates precise prognostic evaluation to inform critical treatment strategies. Recent advancements have identified quantitative electroencephalography (qEEG) as a pivotal instrument in refining prognostic accuracy for AIS. This investigation aimed to construct a robust prognostic model, anchored in qEEG parameters, to enhance the precision of clinical prognosis 6 months after discharge in AIS patients. <i>Methods:</i> In a retrospective observational study, we analyzed AIS cases from January 2022 to March 2023. Data encompassing demographic profiles, clinical manifestations, qEEG findings, and modified Rankin Scale (mRS) assessments were evaluated for 109 patients with AIS. These metrics were instrumental in developing prognostic models, segregating outcomes into either favorable (mRS: 0-2) or unfavorable categories (mRS: 3-6) at 6 months post-discharge. Prognostic models were developed using clinical and qEEG parameters. <i>Results:</i> The formulation of two distinct prognostic models was predicated on an integration of baseline clinical data (age, unilateral limb weakness, ataxia and red blood cell count) and specific qEEG metrics (T3-P3 (TAR) and T4-P4 (TAR)). The synthesis of these models culminated in the Prognostic Model 3, which exhibited a marked enhancement in prognostic accuracy, as evidenced by an area under the curve (AUC) of 0.8227 (95% CI: 0.7409-0.9045), thereby signifying a superior prediction of AIS prognosis 6 months after discharge relative to the individual models. <i>Conclusion:</i> Quantitative EEG, especially increased theta/alpha power ratio (TAR), might improve the prediction of prognosis 6 months after discharge of acute ischemic stroke in clinical practice.</p>","PeriodicalId":93940,"journal":{"name":"Clinical EEG and neuroscience","volume":" ","pages":"15500594251323119"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Electroencephalogram Might Improve the Predictive Value of Prognosis 6 Months After Discharge in Acute Ischemic Stroke.\",\"authors\":\"Haifeng Mao, Liwei Liu, Peiyi Lin, Xinran Meng, Timothy H Rainer, Qianyi Wu\",\"doi\":\"10.1177/15500594251323119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Background:</i> As a leading cause of severe morbidity, acute ischemic stroke (AIS) necessitates precise prognostic evaluation to inform critical treatment strategies. Recent advancements have identified quantitative electroencephalography (qEEG) as a pivotal instrument in refining prognostic accuracy for AIS. This investigation aimed to construct a robust prognostic model, anchored in qEEG parameters, to enhance the precision of clinical prognosis 6 months after discharge in AIS patients. <i>Methods:</i> In a retrospective observational study, we analyzed AIS cases from January 2022 to March 2023. Data encompassing demographic profiles, clinical manifestations, qEEG findings, and modified Rankin Scale (mRS) assessments were evaluated for 109 patients with AIS. These metrics were instrumental in developing prognostic models, segregating outcomes into either favorable (mRS: 0-2) or unfavorable categories (mRS: 3-6) at 6 months post-discharge. Prognostic models were developed using clinical and qEEG parameters. <i>Results:</i> The formulation of two distinct prognostic models was predicated on an integration of baseline clinical data (age, unilateral limb weakness, ataxia and red blood cell count) and specific qEEG metrics (T3-P3 (TAR) and T4-P4 (TAR)). The synthesis of these models culminated in the Prognostic Model 3, which exhibited a marked enhancement in prognostic accuracy, as evidenced by an area under the curve (AUC) of 0.8227 (95% CI: 0.7409-0.9045), thereby signifying a superior prediction of AIS prognosis 6 months after discharge relative to the individual models. <i>Conclusion:</i> Quantitative EEG, especially increased theta/alpha power ratio (TAR), might improve the prediction of prognosis 6 months after discharge of acute ischemic stroke in clinical practice.</p>\",\"PeriodicalId\":93940,\"journal\":{\"name\":\"Clinical EEG and neuroscience\",\"volume\":\" \",\"pages\":\"15500594251323119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594251323119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15500594251323119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:作为严重发病率的主要原因,急性缺血性卒中(AIS)需要精确的预后评估来告知关键的治疗策略。最近的进展已经确定定量脑电图(qEEG)是一个关键的工具,在提高预后准确性AIS。本研究旨在构建以qEEG参数为基础的稳健预后模型,以提高AIS患者出院后6个月临床预后的准确性。方法:在一项回顾性观察研究中,我们分析了2022年1月至2023年3月的AIS病例。对109例AIS患者的人口统计资料、临床表现、qEEG结果和改良Rankin量表(mRS)评估进行了评估。这些指标有助于建立预后模型,在出院后6个月将结果分为有利(mRS: 0-2)或不利类别(mRS: 3-6)。使用临床和qEEG参数建立预后模型。结果:两种不同预后模型的制定基于基线临床数据(年龄、单侧肢体无力、共济失调和红细胞计数)和特定qEEG指标(T3-P3 (TAR)和T4-P4 (TAR))的整合。这些模型的综合最终形成了预后模型3,该模型的预后准确性显著提高,曲线下面积(AUC)为0.8227 (95% CI: 0.7409-0.9045),从而表明相对于单个模型,该模型对AIS出院后6个月的预后有更好的预测。结论:定量脑电图,特别是提高theta/alpha功率比(TAR)在临床应用中可提高急性缺血性脑卒中患者出院后6个月的预后预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative Electroencephalogram Might Improve the Predictive Value of Prognosis 6 Months After Discharge in Acute Ischemic Stroke.

Background: As a leading cause of severe morbidity, acute ischemic stroke (AIS) necessitates precise prognostic evaluation to inform critical treatment strategies. Recent advancements have identified quantitative electroencephalography (qEEG) as a pivotal instrument in refining prognostic accuracy for AIS. This investigation aimed to construct a robust prognostic model, anchored in qEEG parameters, to enhance the precision of clinical prognosis 6 months after discharge in AIS patients. Methods: In a retrospective observational study, we analyzed AIS cases from January 2022 to March 2023. Data encompassing demographic profiles, clinical manifestations, qEEG findings, and modified Rankin Scale (mRS) assessments were evaluated for 109 patients with AIS. These metrics were instrumental in developing prognostic models, segregating outcomes into either favorable (mRS: 0-2) or unfavorable categories (mRS: 3-6) at 6 months post-discharge. Prognostic models were developed using clinical and qEEG parameters. Results: The formulation of two distinct prognostic models was predicated on an integration of baseline clinical data (age, unilateral limb weakness, ataxia and red blood cell count) and specific qEEG metrics (T3-P3 (TAR) and T4-P4 (TAR)). The synthesis of these models culminated in the Prognostic Model 3, which exhibited a marked enhancement in prognostic accuracy, as evidenced by an area under the curve (AUC) of 0.8227 (95% CI: 0.7409-0.9045), thereby signifying a superior prediction of AIS prognosis 6 months after discharge relative to the individual models. Conclusion: Quantitative EEG, especially increased theta/alpha power ratio (TAR), might improve the prediction of prognosis 6 months after discharge of acute ischemic stroke in clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信