固定脑血流:使用物理信息神经网络分析婴儿灌注MRI。

Frontiers in network physiology Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.3389/fnetp.2025.1488349
Christoforos Galazis, Ching-En Chiu, Tomoki Arichi, Anil A Bharath, Marta Varela
{"title":"固定脑血流:使用物理信息神经网络分析婴儿灌注MRI。","authors":"Christoforos Galazis, Ching-En Chiu, Tomoki Arichi, Anil A Bharath, Marta Varela","doi":"10.3389/fnetp.2025.1488349","DOIUrl":null,"url":null,"abstract":"<p><p>Arterial spin labelling (ASL) magnetic resonance imaging (MRI) enables cerebral perfusion measurement, which is crucial in detecting and managing neurological issues in infants born prematurely or after perinatal complications. However, cerebral blood flow (CBF) estimation in infants using ASL remains challenging due to the complex interplay of network physiology, involving dynamic interactions between cardiac output and cerebral perfusion, as well as issues with parameter uncertainty and data noise. We propose a new spatial uncertainty-based physics-informed neural network (PINN), SUPINN, to estimate CBF and other parameters from infant ASL data. SUPINN employs a multi-branch architecture to concurrently estimate regional and global model parameters across multiple voxels. It computes regional spatial uncertainties to weigh the signal. SUPINN can reliably estimate CBF (relative error <math><mrow><mo>-</mo> <mn>0.3</mn> <mo>±</mo> <mn>71.7</mn></mrow> </math> ), bolus arrival time (AT) <math><mrow><mo>(</mo> <mrow><mn>30.5</mn> <mo>±</mo> <mn>257.8</mn></mrow> <mo>)</mo></mrow> </math> , and blood longitudinal relaxation time <math><mrow><mo>(</mo> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>b</mi></mrow> </msub> </mrow> <mo>)</mo></mrow> </math> (-4.4 <math><mrow><mo>±</mo></mrow> </math> 28.9), surpassing parameter estimates performed using least squares or standard PINNs. Furthermore, SUPINN produces physiologically plausible spatially smooth CBF and AT maps. Our study demonstrates the successful modification of PINNs for accurate multi-parameter perfusion estimation from noisy and limited ASL data in infants. Frameworks like SUPINN have the potential to advance our understanding of the complex cardio-brain network physiology, aiding in the detection and management of diseases. Source code is provided at: https://github.com/cgalaz01/supinn.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"5 ","pages":"1488349"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868054/pdf/","citationCount":"0","resultStr":"{\"title\":\"PINNing cerebral blood flow: analysis of perfusion MRI in infants using physics-informed neural networks.\",\"authors\":\"Christoforos Galazis, Ching-En Chiu, Tomoki Arichi, Anil A Bharath, Marta Varela\",\"doi\":\"10.3389/fnetp.2025.1488349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arterial spin labelling (ASL) magnetic resonance imaging (MRI) enables cerebral perfusion measurement, which is crucial in detecting and managing neurological issues in infants born prematurely or after perinatal complications. However, cerebral blood flow (CBF) estimation in infants using ASL remains challenging due to the complex interplay of network physiology, involving dynamic interactions between cardiac output and cerebral perfusion, as well as issues with parameter uncertainty and data noise. We propose a new spatial uncertainty-based physics-informed neural network (PINN), SUPINN, to estimate CBF and other parameters from infant ASL data. SUPINN employs a multi-branch architecture to concurrently estimate regional and global model parameters across multiple voxels. It computes regional spatial uncertainties to weigh the signal. SUPINN can reliably estimate CBF (relative error <math><mrow><mo>-</mo> <mn>0.3</mn> <mo>±</mo> <mn>71.7</mn></mrow> </math> ), bolus arrival time (AT) <math><mrow><mo>(</mo> <mrow><mn>30.5</mn> <mo>±</mo> <mn>257.8</mn></mrow> <mo>)</mo></mrow> </math> , and blood longitudinal relaxation time <math><mrow><mo>(</mo> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn> <mi>b</mi></mrow> </msub> </mrow> <mo>)</mo></mrow> </math> (-4.4 <math><mrow><mo>±</mo></mrow> </math> 28.9), surpassing parameter estimates performed using least squares or standard PINNs. Furthermore, SUPINN produces physiologically plausible spatially smooth CBF and AT maps. Our study demonstrates the successful modification of PINNs for accurate multi-parameter perfusion estimation from noisy and limited ASL data in infants. Frameworks like SUPINN have the potential to advance our understanding of the complex cardio-brain network physiology, aiding in the detection and management of diseases. Source code is provided at: https://github.com/cgalaz01/supinn.</p>\",\"PeriodicalId\":73092,\"journal\":{\"name\":\"Frontiers in network physiology\",\"volume\":\"5 \",\"pages\":\"1488349\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868054/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in network physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnetp.2025.1488349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2025.1488349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动脉自旋标记(ASL)磁共振成像(MRI)实现脑灌注测量,这对于检测和管理早产儿或围产期并发症后的神经问题至关重要。然而,由于网络生理学的复杂相互作用,包括心输出量和脑灌注之间的动态相互作用,以及参数不确定性和数据噪声问题,使用ASL估计婴儿脑血流量(CBF)仍然具有挑战性。我们提出了一种新的基于空间不确定性的物理信息神经网络(PINN) SUPINN,用于从婴儿ASL数据中估计CBF和其他参数。SUPINN采用多分支架构,在多个体素上同时估计区域和全局模型参数。它计算区域空间不确定性来衡量信号。SUPINN可以可靠地估计CBF(相对误差- 0.3±71.7),药物到达时间(AT)(30.5±257.8)和血液纵向松弛时间(t1 b)(-4.4±28.9),优于使用最小二乘法或标准pinn进行的参数估计。此外,SUPINN产生生理上合理的空间平滑CBF和AT地图。我们的研究证明了pinn的成功修改,可以从婴儿嘈杂和有限的ASL数据中准确地估计多参数灌注。像SUPINN这样的框架有可能促进我们对复杂的心脑网络生理学的理解,有助于疾病的检测和管理。源代码提供于:https://github.com/cgalaz01/supinn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PINNing cerebral blood flow: analysis of perfusion MRI in infants using physics-informed neural networks.

Arterial spin labelling (ASL) magnetic resonance imaging (MRI) enables cerebral perfusion measurement, which is crucial in detecting and managing neurological issues in infants born prematurely or after perinatal complications. However, cerebral blood flow (CBF) estimation in infants using ASL remains challenging due to the complex interplay of network physiology, involving dynamic interactions between cardiac output and cerebral perfusion, as well as issues with parameter uncertainty and data noise. We propose a new spatial uncertainty-based physics-informed neural network (PINN), SUPINN, to estimate CBF and other parameters from infant ASL data. SUPINN employs a multi-branch architecture to concurrently estimate regional and global model parameters across multiple voxels. It computes regional spatial uncertainties to weigh the signal. SUPINN can reliably estimate CBF (relative error - 0.3 ± 71.7 ), bolus arrival time (AT) ( 30.5 ± 257.8 ) , and blood longitudinal relaxation time ( T 1 b ) (-4.4 ± 28.9), surpassing parameter estimates performed using least squares or standard PINNs. Furthermore, SUPINN produces physiologically plausible spatially smooth CBF and AT maps. Our study demonstrates the successful modification of PINNs for accurate multi-parameter perfusion estimation from noisy and limited ASL data in infants. Frameworks like SUPINN have the potential to advance our understanding of the complex cardio-brain network physiology, aiding in the detection and management of diseases. Source code is provided at: https://github.com/cgalaz01/supinn.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信